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Chapter 1

Prelude

The study of modal λ-calculi, and the modal logics associated with them through
the Curry-Howard correspondence (Howard, 1980; Girard et al., 1989; Sørensen and
Urzyczyn, 2006) began at the dawn of the 1990s, heralded by the developments in
Linear Logic. Early milestones include Moggi’s monadic metalanguage (Moggi, 1991),
and the discovery of a constructive S4-like modality by Bierman and de Paiva (2000).
This was followed by an explosion of developments, as well as some first applications.
This era is surveyed by de Paiva et al. (2004).

Since the early 2000s this field has been commandeered by the programming lan-
guage community, who may have focused less on theory, but have made great strides
in applications—ranging from metaprogramming (Taha and Sheard, 2000; Tsukada
and Igarashi, 2010) to ‘dependency analysis’ (Abadi et al., 1999), and even distributed
computing and mobile code (Murphy et al., 2004).

The major issue with modal proof theory is that its methods are, at their best,
kaleidoscopic: some types of calculi seemingly work better for specific logics, but fail
to suit others. It is easy to develop an intuition about these patterns. However, it is
much harder to explain why a particular pattern suits a particular modal logic.

In the sequel we propose an explanation that clarifies why the necessity fragments
of the most popular normal modal logics—namely K, T, K4, GL and S4—are best
suited to dual-context calculi, as pioneered by Girard (1993), Andreoli (1992), Wadler
(1993, 1994), Plotkin (1993), Barber (1996), Pfenning and Davies (2001) and Davies
and Pfenning (2001). The crux of the argument is that separating assumptions into a
modal zone and an intuitionistic zone allows one to ‘mimic’ rules from known cut-free
sequent calculi for these logics.

Our investigation is structured as follows. We first define and discuss the the
aforementioned constructive modal logics, and present a Hilbert system for each.
Then, we very briefly revisit previous attempts at presenting calculi for each of these.
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This naturally leads us to a presentation of our systematic way for deriving dual
context systems from sequent calculi. We define our calculi, prove that they are
equivalent to the Hilbert systems, and delve into their metatheory. This is followed
by a study of a simple notion of reduction on terms, which is shown to satisfy the usual
properties. The addition of a few commuting conversions also yields the subformula
property. Finally, we develop the category theory necessary to model these calculi,
and discover sound and complete categorical semantics for them.

Our contribution is twofold. On the theoretical side, it amounts to a full exten-
sion of the Curry-Howard-Lambek isomorphism—based on its usual triptych of logic,
computation and categories—to a handful of modal logics. Indeed, only fragments
of our dual-context formulations have appeared before. The original formulation of
dual-context S4 belongs to Pfenning and Davies (2001), who introduced dual contexts
to modal logic. However, their work mostly concerned the type system and its appli-
cations to binding-time analysis: they did not discuss reduction in any appreciable
depth. An approach that is similar in shape to ours for K and K4 was presented
by Frank Pfenning at the LFMTP’15 workshop (Pfenning, 2015) in the context of a
linear sequent calculus. This ‘linear K’ of Pfenning seems to be closely related to the
work of Danos and Joinet (2003) in elementary linear logic. However, the natural
deduction formulation of the intuitionistic modal case, as well as the technical inno-
vations regarding the term calculus that are needed for K4 (and consequently GL), are
independently due to the present author. The only previous approach to GL was the
rather complicated natural deduction calculus of Bellin (1985), and the appreciably
simpler dual-context formulation is our own invention. Finally, the approach to T is
new. The reader is invited to consult the survey (Kavvos, 2016) for a more detailed
history of modal λ-calculi.

On the other hand, the results in this paper are also meant to provide a solid
foundation for applications in programming languages. Necessity modalities are a
way to control data flow within a programming language. As such, a clear view of
the landscape can help one pick the appropriate modal axioms to ensure some desired
correctness property.

Before we proceed any further, let us mention that the author has formalized most
of the metatheoretic results in Agda; the proofs are available either from his website1

or his GitHub repository.2

1 www.lambdabetaeta.eu
2lambdabetaeta/modal-logics
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Chapter 2

The Logics in Question

In the sequel we will study the necessity fragment of five modal logics: constructive K
(abbrv. CK), constructive K4 (abbrv. CK4), constructive T (abbrv. CT), constructive
GL (abbrv. CGL), and constructive S4 (abbrv. CS4). In this chapter we shall discuss
the common characteristics amongst these logics, define their syntax, and present a
Hilbert system for each.

2.1 Constructive Modal Logics

All of the above logics belong to a group of logics that are broadly referred to as
constructive modal logics. These are intuitionistic variants of known modal logics
which have been cherry-picked to satisfy a specific desideratum, namely to have a
well-behaved Gentzen-style proof-theoretic interpretation, and thereby an associated
computational interpretation through the Curry-Howard isomorphism.

There are a few characteristics common to all these logics, which are rather more
appreciable when the possibility modality (♦) is taken into consideration. First, the
de Morgan duality between necessity (�) and possibility (♦) breaks down, rendering
those two modalities logically independent. For that reason we shall mostly refer to
the � as the box modality, and ♦ as the diamond modality respectively. Second, the
principles ♦(A∨B)→ ♦A∨♦B and ¬♦⊥ are not provable. These two principles are
tautologies if we employ traditional Kripke semantics (Kripke, 1963). Thus, the step
to constructivity necessitates that we eschew the Kripkean analysis, at least in its
most popular form. But even if the diamond modality is essential in pinpointing the
salient differences between constructive modal logics and other forms of intuitionistic
modal logic (e.g. Simpson (1994)), it seems that its computational interpretation is
not very crisp. Hence, we restrict our study to the more well-behaved and seemingly
more applicable necessity modality (but see Pfenning (2001)).
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As the history of modal proof theory and constructive modal logics is long and
tumultuous, we shall try to avoid the subject as much as possible. An extensive
survey and discussion of the history of constructive modal logic may be found in (?).
For a broader survey of the proof theory for modal logic we recommend Negri (2011).

2.2 Preliminaries

All our modal logics shall be inductively defined sets of formulae—the theorems of
the logic. These formulae are generated by the following Backus-Naur form:

A,B ::= pi | ⊥ | A ∧B | A ∨B | A→ B | �A

where pi is drawn from a countable set of propositions. The sets of theorems will
be generated by axioms, closed under some inference rules. The set of axioms will
always contain (a) all the instances the axioms of intuitionistic propositional logic,
but for modal formulae (abbrv. IPL�); and (b) all instances of the normality axiom,
also known as axiom K:

(K) �(A→ B)→ (�A→ �B)

The set of inference rules will contain—amongst others—of all instances the two
rules necessary to capture IPL�, namely the axiom rule:

A is an axiom

A ∈ L

and the rule of modus ponens :

(A→ B) ∈ L A ∈ L

B ∈ L

As for the modal part, we include all instances of the necessitation rule, namely

A ∈ L

�A ∈ L

The only thing that will then vary between any two of our logics L will be the set of
axioms.
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2.3 Hilbert systems

There are two steps to passing from the definition of a logic to a Hilbert system for
it. First, we introduce a judgment of the form

Γ ` A

where Γ is a context, i.e. a list of formulae defined by the BNF

Γ ::= · | Γ, A

and A is a single formula. We shall use the comma to also denote concatenation—
e.g. Γ, A,∆ shall mean the concatenation of three things: the context Γ, the context
consisting of the single formula A, and the context ∆.

The judgment Γ ` A is meant to be read as “from assumptions Γ, we infer A.”
The second step is to include the rules of axiom and modus ponens in this system.
We also add a rule that allows us to use an assumption; that is,

Γ, A ` A

We need to be careful in adapting the rule of necessitation. Doing so in a straight-
forward manner may invalidate the deduction theorem, which was a source of con-
fusion in early work on the proof theory of modal logic—see Hakli and Negri (2012)
for a historical and technical account. To solve this issue, we need to recall that
necessitation is often similar to universal quantification: �A is a theorem just if A
is a theorem, and there is no reason that this will be so if we need any assump-
tions to prove A to be a theorem. Hence, we should be able to infer �A (under any
assumptions) only if we can infer A without any assumptions at all. In symbols:

` A

Γ ` �A
The full system may be found in Figure 2.1.

2.4 Axioms

To obtain the various aforementioned logics, all we need to do is vary the set of
axioms. We write

(A1)⊕ · · · ⊕ (An)

to mean the set of theorems A such that ` A is derivable from all instances of the
axioms (A1), . . . , (An) under the rules in Figure 2.1.
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Figure 2.1: Hilbert systems

(assn)
Γ, A ` A

A is an axiom
(ax)

Γ ` A

Γ ` A→ B Γ ` A
(MP )

Γ ` B

` A
(NEC)

Γ ` �A

We write (IPL�) to mean all instances of the axiom schemata of intuitionistic
propositional logic, but also including formulas of the form �A in the syntax. We
will use the following axiom schemata:

(K) �(A→ B)→ (�A→ �B)

(4) �A→ ��A

(T) �A→ A

(GL) �(�A→ A)→ �A

Constructive K is then defined as the minimal normal constructive modal logic.
Constructive K4 results from adding the axiom 4. Likewise, constructive T results
from adding axiom T to CK. Constructive S4 results from all these three axioms taken
together. Finally, we obtain constructive GL from CK by adding the Gödel-Löb axiom
GL. A summary in symbols is in order:

CK def
= (IPL�)⊕ (K)

CK4 def
= (IPL�)⊕ (K)⊕ (4)

CT def
= (IPL�)⊕ (K)⊕ (T)

CS4 def
= (IPL�)⊕ (K)⊕ (4)⊕ (T)

CGL def
= (IPL�)⊕ (K)⊕ (GL)

To indicate that we are using the Hilbert system for e.g. CK, we annotate the
turnstile, like so:

Γ `CK A

We simply write Γ ` A or Γ `H A when the statement under discussion pertains to
all of our Hilbert systems.
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2.5 Metatheory for Hilbert

2.5.1 Structural rules

We establish the following basic facts about all our logics:

Theorem 1 (Structural & Cut). The following rules are admissible.1

1. (Weakening)

Γ ` C

Γ, A ` C

2. (Exchange)

Γ, A,B,Γ′ ` C

Γ, B,A,Γ′ ` C

3. (Contraction)

Γ, A,A,Γ′ ` C

Γ, A,Γ′ ` C

4. (Cut)

Γ ` A Γ, A,Γ′ ` C

Γ ` C

Proof. All by induction.

Theorem 2 (Deduction Theorem). The following rule is admissible in all of our
logics:

Γ, A ` B

Γ ` A→ B

Proof. By induction on the derivation of Γ, A ` C.

2.5.2 Admissible Rules

We now consider some rules that are admissible in our Hilbert systems. These will
prove useful when we tackle the equivalence of the Hilbert systems with the dual-
context systems.

The first one is Scott’s rule, which ensures that if we ‘box’ all our assumptions,
we can get something ‘boxed’ in return. Categorically, Scott’s rule expresses the fact
that the box modality is a functor, and that this functor is monoidal. We write �Γ

to mean the context Γ which each assumption occurring in it boxed, i.e.

�(A1, . . . , An)
def
= �A1, . . . ,�An

1Recall that a rule is admissible just if the existence of a proof of the antecedent implies the
existence of a proof of the conclusion. In contrast, a rule is derivable just if a proof of the antecedent
can be used verbatim to make a proof of the conclusion.
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Theorem 3 (Admissibility of Scott’s rule). The following rule is admissible in all of
our logics:

Γ ` A

�Γ ` �A
Proof. Induction on the derivation of Γ ` A. Most cases are straightforward, except
perhaps the one for modus ponens. If the last step in the derivation of Γ ` A is of
the form ···

Γ ` B → A

···
Γ ` B

Γ ` A
then, by applying the induction hypotheses to the two subderivations, we obtain
proofs of �Γ ` � (B → A) and �Γ ` �B. We can then use axiom K and use modus
ponens twice to build the desired proof, like so:

�Γ ` �(B → A)→ �B → �A

···
�Γ ` �(B → A)

�Γ ` �B → �A

···
�Γ ` �B

�Γ ` �A

Next, we deal with a rule that is only derivable if the system contains the axiom
T. The gist of the rule is that �A is stronger than A, as it implies it in any context.

Theorem 4 (Admissibility of the T Rule). If L is a logic that includes the T axiom,
i.e. if L ∈ {CT,CS4}, then the following rule is admissible:

Γ `L A

�Γ `L A

Proof. By induction on the derivation of Γ ` A. All the cases are straightforward,
except the assumption rule. If Γ ` A because A occurs in Γ, then �Γ ` �A, and
using modus ponens along with an instance of axiom T yields the result.

Finally, we present a rule that we call the Four rule. As its name suggests, the
Four rule deductively encapsulates the inclusion of axiom 4. In a nutshell, it expresses
the fact that, if something is derivable from ��A, then it is derivable from �A itself.

The Four rule only pertains to logics that include all instances of 4. One of these
logics is CGL, but in its case 4 is a theorem, so we begin by deriving it:

Lemma 1. `CGL �A→ ��A

12



Proof. We follow Boolos (1994). It is not hard to see that, by using the one of the
product axioms and Scott’s rule, �(�A ∧ A) ` �A, and hence that

A,�(�A ∧ A) ` �A ∧ A

again by using weakening and the one of the product axioms. Then, the deduction
theorem and Scott’s rule yield that

�A ` � (� (�A ∧ A)→ �A ∧ A)

Using that alongside modus ponens and the Gödel-Löb axiom yields

�A ` � (�A ∧ A)

and using the cut rule with � (�A ∧ A) ` ��A followed by the deduction theorem
yields the result.

Thus:

Theorem 5 (Admissibility of the Four Rule). If L is a logic that includes 4 either
as axiom or as theorem, i.e. if L ∈ {CK4,CGL,CS4}, then the following rule is
admissible:

�Γ,Γ `L A

�Γ `L �A

Proof. Induction on the derivation of �Γ,Γ ` A. Most cases are straightforward: it
suffices to use necessitation. The case for modus ponens uses axiom K—see the proof
for Scott’s rule for details.

This leaves the case where �Γ,Γ ` A by the assumption rule. It follows that A
either occurs in �Γ, or it occurs in Γ. If it occurs in �Γ, then it is of the form �A′;
thus �Γ ` �A′, and using modus ponens alongside an instance of axiom 4 yields
�Γ ` ��A′ = �A. If, on the other hand, A occurs in Γ, then �Γ ` �A by the
assumption rule, and we are done.

A slightly weaker variant of the Four rule appears in Bierman and de Paiva (2000).
It is a corollary to ours:

Corollary 1. If L is a logic that includes 4 either as axiom or as theorem, i.e. if
L ∈ {CK4,CGL,CS4}, then the following rule is admissible:

�Γ `L A

�Γ `L �A

13



Proof. Use weakening and the Four rule.

If the T rule is admissible as well—i.e. in the case of CS4—we can derive the
theorem from the corollary. If �Γ,Γ ` A, then repeated uses of the T rule yield
�Γ,�Γ ` A. Repeated uses of contraction then yield �Γ ` A, and then the corollary
applies, yielding the conclusion of the theorem. However, if the axiom T is not present
and Rule T is not admissible, we shall need the stronger version.

Finally, we show that Löb’s rule is admissible in CGL. Again, we show a stronger
version:

Theorem 6 (Löb’s Rule). The following rule is admissible in CGL:

�Γ,Γ,�A ` A

�Γ ` �A

Proof. By the deduction theorem, we can infer that �Γ,Γ ` �A→ A, and hence by
the Four rule (Theorem 5), it follows that

�Γ ` �(�A→ A)

Using an instance of the Gödel-Löb axiom and modus ponens yields the conclusion
of the rule.

Again, we have a corollary that is weaker but corresponds to what is normally
referred to as Löb’s rule:

Corollary 2. The following rule is admissible in CGL:

�Γ,�A ` A

�Γ ` �A

Proof. Use weakening and Löb’s rule.
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Chapter 3

From sequent calculi to dual contexts

In this chapter we discuss the issues that one has to tackle time and time again whilst
devising modal λ-calculi for necessity modalities.

3.1 The Perennial Issues

A brief perusal of the survey (?) indicates that most work in the subject is con-
centrated on the analysis of essentially two kinds of calculi: (a) those with explicit
substitutions, following a style that was popularised by Bierman and de Paiva (1992,
1996, 2000); and (b) those employing dual contexts, a pattern that was imported into
modal type theory by (Davies and Pfenning, 1996) and (Pfenning and Davies, 2001).

3.1.1 Explicit substitutions à la Bierman & de Paiva

The calculus introduced by Bierman and de Paiva made use of a trick that was
previously employed in the context of Intuitionistic Linear Logic by Benton et al.
(1993) to ensure that substitution is admissible. The trick is simple: if cut is not
admissible, then build it into the introduction rule.

In the case of CS4 (Bierman and de Paiva, 2000), the resulting λ-calculus is a
simple extension of the ordinary simply typed one with the following introduction
rule:

Γ `M1 : �A1 . . . Γ `Mn : �An x1 : �A1, . . . , xn : �An ` N : B

Γ ` box N with M1, . . . ,Mn for x1, . . . xn : �B

In this example, x1, . . . xn comprise all the free variables that may occur in N . They
must all be ‘modal,’ in that their type has to start with a box. But if we are to
place a box in front of B then we must provide a substitute Mi for each of these free
variables, andMi must also be of modal type. In short: all the data that goes into the
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making of something of type �B must be ‘boxed.’ And, as if that were not enough,
all these terms of type Ai must be provided at once, for they are ‘frozen’ as part of
the term of type �B: they become an explicit substitution in the syntax. This is a
combined introduction and cut rule: the introduction part ensures that modal data
depend only on modal data, and the cut part allows for substitution.

By comparison, the elimination rule is much simpler, and incorporates axiom T
(�A→ A):

Γ `M : �A

Γ ` unbox M : A

In order to ensure admissibility of cut and hence subject reduction, the β-rule asso-
ciated with these rules has the effect of unrolling the explicit substitutions en masse:

unbox (box N with M1, . . . ,Mn for x1, . . . xn) −→ N [M1/x1, . . . ,Mn/xn]

Calculi of this sort are notorious for suffering from two kinds of problems: (a)
their need for multiple commutative conversions, and (b) the general lack of ‘good
symmetries’ in the rules of the calculus. These two aspects we shall discuss in turn.

Commuting Conversions In order to maintain the validity of central proof-theoretic
results, calculi with explicit subsitutions often need a large number of commu-
tative conversions. Amongst other things, these conversions expose ‘hidden’ re-
dexes, the existence of which spoil the so-called subformula property. The issue
of commutative conversions is known to arise from rules for positive connec-
tives, such as those for disjunction and existence; for a particularly perspicuous
discussion, see (Girard et al., 1989, §10.1).

In calculi such as the above, commutative conversions are are invariably some
kind of structural rule concerning the explicit substitutions. Structural rules
are traditionally found in sequent calculi, but not in natural deduction where
they are often admissible. Their presence in a natural deduction system is
incompatible with the view that natural deduction proofs comprise the “real
proof objects”—see (Girard et al., 1989, §5.4). In the case of Bierman and de
Paiva’s system for CS4, Goubault-Larrecq (1996) argues that systems like it
obscure the computational meaning of modal proofs: if they didn’t, they would
need no structural rules at all.

‘Good’ symmetries The calculus of Bierman and de Paiva for CS4 exhibits rea-
sonable symmetries: if we forget about the explicit substitutions for a moment,
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then we can see an introduction and an elimination rule, the latter post-inverse
to the former: there is reasonable harmony.

Things are not that simple when it comes to other calculi of this sort. To see
that, we look at the the calculus of Bellin et al. (2001) for CK. Its introduction
rule is only slightly different to the one for CS4, in that the free variables need
not be of modal type. However, the substitutes for these free variables do not
need to be of modal type. To wit:

Γ `M1 : �A1 . . . Γ `Mn : �An x1 : A1, . . . , xn : An ` N : B

Γ ` box N with M1, . . . ,Mn for x1, . . . xn : �B

In this calculus there can be no harmony, for there is no elimination rule at all.
Indeed, the only plausible ‘β-rule’ one might adopt is actually just a commuting
conversion that was previously studied in the context of CS4 by Goubault-
Larrecq (1996). Its function is to unbox any ‘canonical’ terms in the explicit
substitutions; e.g

box yx with y, (box M with z for z) for y, x −→ box y(box M) with y, z for y, z

in an appropriate context for y and z. It is thus evident that once we step out of
the relatively harmonious patterns of CS4, the use of systems based on explicit
subsitutions becomes less and less tenable.

It is thus evident that in order to reach a better solution we must overcome two
problems: (a) we must ‘decouple’ the two flavours—introduction and cut—that are
both present in introduction rules of this type; and (b) we must minimize as much
as possible the commuting conversions—in particular, we should strive to make them
free of any computational content. We should expect, though, that to do so one might
have to sacrifice the apparent simplicity of this type of system.

3.1.2 Dual contexts

The right intuition for achieving this ‘decoupling’ was introduced by Girard (1993)
in his attempt to combine classical, intuitionistic, and linear logic in one system, and
also independently by Andreoli (1992) in the context of linear logic programming.

The gist of the idea is simple and can be turned into a slogan: segregate assump-
tions. This means that we should divide our usual context of assumptions in two,
or—even better—think of it as consisting of two zones. We should think of one zone
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as the primary zone, and the assumptions occuring in it as the ‘ordinary’ sort of as-
sumptions. The other zone is the secondary zone, and the assumptions in it normally
have a different flavour. In this context, the introduction rule explains the interac-
tion between the two contexts, whereas the elimination rule effects substitution for
the secondary context.

This idea has been most profitable in the case of the Dual Intuitionistic Linear
Logic (DILL) of Barber (1996) and Plotkin (1993), where the primary context con-
sists of linear assumptions, whereas the secondary consists of ordinary intuitionstic
assumptions. The ‘of course’ modality (!) of Linear Logic is very much like a S4
modality, and—simply by lifting the linearity restrictions—(Pfenning and Davies,
2001; Davies and Pfenning, 2001) adapted the work of Barber and Plotkin to the
modal logic CS4 with considerable success. In this system, hereafter referred to as
Dual Constructive S4 (DS4), the primary context consists of intuitionistic assump-
tions, whereas the secondary context consists of modal assumptions.

However, the systems of Barber, Plotkin, Davies and Pfenning do not immedi-
ately seem adaptable to other logics. Indeed, the pattern may at first seem limited to
modalities like ‘of course’ and the necessity of S4, which—categorically—are comon-
ads. Recall that a comonad can be decomposed into an adjunction, which satisfies a
universal property, and it may seem that the syntax heavily depends on that.

In the rest of this chapter we argue that, not only does the dual-context pattern
not depend on this universal property at all, but that it can easily be adapted to
capture the necessity fragments of all the other aforementioned logics.

3.2 Deriving dual-context calculi

We shall start with the usual suspect, namely the sequent calculus. Gentzen intro-
duced the sequent calculus in the 1930s (Gentzen, 1935a,b) in order to study normal-
isation of proofs, known as cut elimination in this context; see Girard et al. (1989)
for an introduction.

Proofs in the sequent calculus consist of trees of sequents, which take the form
Γ ` A, where Γ is a context. Thus in our notation a sequent is a different name for
a judgment, like the ones in natural deduction.1 The rules, however, are different:
they come in two flavours: left rules and right rules. Broadly speaking, right rules
are exactly the introduction rules of natural deduction, as they only concern the

1Fundamental differences arise in the case of classical logics, where sequents are of the form Γ ` ∆
where both Γ and ∆ are lists of formulae. For the purposes of intuitionistic logic ∆ consists of at
most one formula—see (Girard et al., 1989, §5.1.3).
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conclusion A of the sequent. The left rules play a role similar to that of elimination
rules, but they do so by ‘gerrymandering’ with the assumptions in Γ. See (Girard
et al., 1989, §5.4) for a more in-depth discussion of the correspondence between natural
deduction and sequent calculus.

The first attempts to forge sequent calculi for modal logics began in the 1950s,
with the formulation of a sequent calculus for S4 by Curry (1952) and Ohnisi and
Matsumoto (1957, 1959). There was also some limited success for other simple modal
logics, mainly involving the axioms we discuss here. Most of these are mentioned by
Ono (1998) and are more thoroughly discussed in the survey by Wansing (2002); see
also (Negri, 2011).

3.2.1 The Introduction Rules

Let us consider the right rule for the logic S4. In the intuitionistic case, the rule is
�Γ ` A

(�R)
�Γ ` �A

One cannot help but notice this rule has an intuitive computational interpretation,
in terms of ‘flow of data.’ We can read it as follows: if only modal data are used
in inferring A, then we may safely obtain �A. Only ‘boxed’ things can flow into
something that is ‘boxed’ (cf. §3.1.1).

Let us now take a closer look at dual-context systems for box modalities. A
dual-context judgment is of the form

∆ ; Γ ` A

where both ∆ and Γ are contexts. The assumptions in ∆ are to be thought of as
modal, whereas the assumptions in Γ are run-of-the-mill intuitionistic assumptions.
A loose translation of a judgment of this form to the ‘ordinary sort’ would be

∆ ; Γ ` A  �∆,Γ ` A

Under this translation, if we ‘mimic’ the right rule for S4 we would obtain the follow-
ing:

∆ ; · ` A

∆ ; · ` �A
where · denotes the empty context. However, natural deduction systems do not have
any structural rules, so we have to include some kind of ‘opportunity to weaken the
context’ in the above rule. If we do so, the result is

∆ ; · ` A

∆ ; Γ ` �A
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Under the translation described above, this is exactly the right rule for S4, with
weakening included. Incidentally, it is also exactly the introduction rule of Pfenning
and Davies (2001) for their dual-context system DS4.

This pattern can actually be harvested to turn the right rules for box in sequent
calculi to introduction rules in dual-context systems. We proceed to tackle each case
separately, except T, which we discuss in §3.2.6.

3.2.2 K

The case for K is slightly harder to fathom at first sight. This is because its sequent
only has a single rule for the modality, which is known as Scott’s rule:

Γ ` A

�Γ ` �A
As Bellin et al. (2001) discuss, this rule fundamentally unsavoury: it is both a left
and a right rule at the same time. It cannot be split into two rules, which is the
pattern that bestows sequent calculus its fundamental symmetries.

Despite this, Scott’s rule is reasonably well-behaved. Leivant (1981) and Valentini
(1982) showed that incorporating Scott’s rule yields a system which admits cut elimi-
nation. Scott’s rule also appears in the sequent calculus for CK studied by Wijesekera
(1990).

With the previous interpretation in mind, our introduction rule should take the
following form:

· ; ∆ ` A

∆ ; · ` �A
Indeed, we emulate Scott’s rule by ensuring that all the intuitionistic assumptions
must become modal, at once. The final form is reached again by adding opportunities
for weakening:

· ; ∆ ` A

∆ ; Γ ` �A
At this point, the reader may protest vehemently, arguing that this is not an

introduction rule in the spirit of natural deduction at all: we are shamelessly messing
with assumptions! So much is true. But it is also true that even the most well-behaved
fragments of natural deduction are not really trees, but involve some ‘back edges,’
e.g. to record when and which assumptions are discharged—see (Girard et al., 1989,
§2.1). The situation is even more involved when it comes to the not-so-well-behaving
positive fragment (∨∃): for example, elimination rule for ∨, namely

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
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involves the silent elimination of two ‘temporary assumptions,’ A and B. Rules
involving such temporary assumptions have been of enough importance to warrant
their own name: they are known as rules “in the style” of Schroeder-Heister (1984).
The sum of it all is this: the proofs were never really trees.

Consequently, our shameless shuffling of assumptions from one context to another
shall not weigh heavily on our conscience. In fact, there is a simple way to think about
the ‘jump’ that the context ∆ makes, from intuitionistic to modal. Suppose indeed
that we are in the process of writing down an ordinary deduction, and we want to
introduce a box in front of the conclusion. All we have to do, then, is to place a mark
on all the assumptions that are open at that point. This does not discharge them,
but it merely makes them modal: there shall be a fundamentally different way of
substiting for them, and it shall be a little more complicated than the simple splicing
of a proof tree at a leaf.2

3.2.3 K4

The right sequent calculus rule for the logic K4, as well as the proof of cut elimination,
is due to Sambin and Valentini (1982). Using elements from his joint work with
Sambin, as well some counterexamples found in the work of Leivant (1981) on GL,
Valentini noticed that the key is to notice that, due to axiom 4, anything derivable by
��A is derivable by �A. The (single) rule for the modality encapsulates this insight:

�Γ,Γ ` A

�Γ ` �A

Thus, to derive �A from a bunch of boxed assumptions, it suffices to derive A from
two copies of the same assumptions, one boxed and one unboxed. This co-occurence
of the same assumptions in two forms will cause some mild technical complications
in the next section, but that will clarify the structure of the ‘flow of data’ in K4.

A direct translation, after adding opportunities for weakening, amounts to the
introduction rule:

∆ ; ∆ ` A

∆ ; Γ ` �A
2In fact, in order to substitute, we will need to ensure that (a) the substitute must have no modal

assumptions at all, and (b) after substitution, we need to mark all the assumptions of that substitute
as modal. But we leave that for later.
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3.2.4 GL

The correct formulation of sequent calculus for GL is a difficult problem that receives
attention time and time again. There are simple solutions that guarantee that we can
derive all and only theorems of GL, but they fail to satisfy cut elimination. There is
also a very complicated system of natural deduction, due to Bellin (1985).

The first attempt at a cut-free sequent calculus was that of Leivant (1981). Soon
thereafter Valentini (1983) showed that Leivant’s proof of cut elimination was incor-
rect. Sambin and Valentini (1980) describe a procedure for building cut-free proofs for
all provable sequents, but their proof is semantic and goes through Kripke structures,
and hence does not rely on Gentzen-style cut elimination. Sambin and Valentini
(1982) collect and describe in detail many early approaches, the reasons they do or
do not work, and all relevant results. Finally, Valentini (1983) shows that the same
rule admits cut elimination, but the proof is rather complicated, and derives from
ideas due to Bellin (1985). Recent progress on clarifying that result may be found in
Goré and Ramanayke (2012).

The Leivant-Valentini sequent calculus rule for GL is the following:

�Γ,Γ,�A ` A

�Γ ` �A

The only difference between this rule and the one for K4 is the appearance of the
‘diagonal assumption’ �A. We can straightforwardly use our translation to state it
as an introduction rule:

∆ ; ∆,�A ` A

∆ ; Γ ` �A

3.2.5 The Elimination Rule

As discussed in §3.1.2, in a dual-context calculus we can consider one of these zones to
be primary, and the other secondary, depending of course on our intentions. Assump-
tions in the primary zone are discharged by λ-abstraction. Thus, the function space
of DILL is linear, whereas the function space of DS4 is intuitionistic. This mechanism
provides for internal substitution for an assumption, by first λ-abstracting it and then
applying the resulting function to an argument.

In contrast, substituting for assumptions in the secondary zone is the capacity
of the elimination rule. This is a customary pattern for dual-context calculi: unlike
primary assumptions, substitution for secondary assumptions is essentially a cut rule.
In the term assignment system we will consider later, this takes the form of an explicit
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substitution, a type of ‘let construct.’ The rationale is this: the rest of the system
controls how secondary assumptions arise and are used, and the elimination rule
uniformly allows one to substitute for them.3 To wit:

∆ ; Γ ` �A ∆, A ; Γ ` C
(�E)

∆ ; Γ ` C

A lot of cheek is involved in trying to pass a cut rule as an elimination rule. Notwith-
standing the hypocrisy, this is not only common, but also the best presently known so-
lution to regaining the patterns of introduction/elimination in the presence of modal-
ity. It is the core of our second slogan: in dual context systems, substitution is a cut
rule for secondary assumptions.

One cannot help but notice that such rules are also in the infamous style of
Schroeder-Heister (1984), and very similar to that for disjunction. This kind of rule
is known to be problematic, as it automatically necessitates some commuting con-
versions: unavoidably, the conclusion C has no structural relationship with anything
else in sight. See (Girard et al., 1989, §10) for a more in-depth discussion.

Can we live with this? Unless we are to engage in more complicated and radical
schemes, the present author is afraid that we must. Put simply, there is no good way
to do away with commuting conversions: they are part-and-parcel of any sufficiently
complicated type theory. All we can hope for is to (a) minimize their number, and
(b) state them systematically.

3.2.6 A second variable rule

We have conveniently avoided discussing two things up to this point: (a) the left rule
for � in S4, which is the only one of our logics that has both left and right rules, and
(b) the case of T. These two are intimately related.

The left rule for necessity in S4 is

Γ, A ` B
(�L)

Γ,�A ` B

We can intuitively read it as follows: if A suffices to infer B, then �A is more than
enough to infer B. It is not hard to see that this encapsulates the T axiom, namely
�A → A. This rule, put together with Scott’s rule, form a sequent calculus where

3Alternative approaches have also been considered. For example, one could introduce another
abstraction operator, i.e. a ‘modal λ.’ This has been adopted by Pfenning (2001), in a dependently-
typed setting.
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cut is admissible; this is mentioned by Wansing (2002) and attributed to Ohnisi and
Matsumoto (1957).

One way of emulating this rule in our framework would be to have a construct
that makes an assumption ‘jump’ from one context to another, but that is inelegant
and probably unworkable. We are in natural deduction, and we have two kinds of
assumptions: modal and intuitionistic. The way to imitate the following is to include
a rule that allows one to use a modal assumption as if it were merely intuitionistic.
To wit:

(�var)
∆, A,∆′ ; Γ ` A

This translates back to the sequent �∆,�A,�∆′,Γ ` A.
A rule like this was introduced by Plotkin (1993) and Barber (1996) for dereliction

in DILL, and was also essential in Davies and Pfenning’s DS4. In our case, we use it
in combination with the introduction rule for K in order to make a system for T.
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Chapter 4

Terms, Types and Metatheory

In this chapter we collect all the observations we made in §3 in order to turn our
natural deduction systems into term assignment systems, i.e. typed λ-calculi. First,
we annotate each assumption A with a variable, e.g. x : A. Then, we annotate each
judgment ∆ ; Γ ` A with a term M reprsenting the entire deduction that with that
judgment as its conclusion—see (Girard et al., 1989, §3) or (Gallier, 1993; Sørensen
and Urzyczyn, 2006) for an introduction. We omit a treatment of ∨, for it is largely
orthogonal.

The grammars defining types, terms and contexts, as well as the typing rules for
all our systems can be found in Figure 4.1. When we are at risk of confusion, we
annotate the turnstile with a subscript to indicate which system we are referring to;
e.g. ∆ ; Γ `GL M : A refers to the system consisting of the rules pertaining to all our
calculi coupled with the introduction rule (�IGL).

We also define
ΛA

def
= {M | ∃∆,Γ. ∆ ; Γ `M : A }

is the set of terms of type A, and we also write Λ for the set of all terms, well-typed
or not.

From this point onwards, we assume Barendregt’s conventions: terms are identified
by α-conversion, and bound variables are silently renamed whenever necessary. In
let box u ⇐ M in N , u is a bound variable in N . Finally, we write N [M/x] to mean
capture-avoiding substitution of M for x in N .

Furthermore, we shall assume that whenever we write a judgment like ∆ ; Γ `M :

A, then ∆ and Γ are disjoint, in the sense that Vars (∆) ∩Vars (Γ) = ∅, where

Vars (x1 : A1, . . . , xn : An)
def
= {x1, . . . , xn}

This causes a mild technical complication in the cases K4 and GL. Fortunately, the
solution is relatively simple, and we explain it now.
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Figure 4.1: Definition and Typing Judgments

Types A,B ::= pi | A×B | A→ B | �A

Typing Contexts Γ,∆ ::= · | Γ, x:A

Terms M,N ::= x | λx:A. M |MN | 〈M,N〉 | π1(M) | π2(M)

| box M | let box u⇐M in N

Rules for all calculi:

(var)
∆ ; Γ, x:A,Γ′ ` x : A

∆ ; Γ `M : A ∆ ; Γ ` N : B
(×I)

∆ ; Γ ` 〈M,N〉 : A×B

∆ ; Γ `M : A1 × A2
(×Ei)

∆ ; Γ ` πi (M) : Ai

∆ ; Γ, x:A `M : B
(→ I)

∆ ; Γ ` λx:A. M : A→ B

∆ ; Γ `M : A→ B ∆ ; Γ ` N : A
(→ E)

∆ ; Γ `MN : B

∆ ; Γ `M : �A ∆, u:A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Rules for K, K4, GL:

· ; ∆ `M : A
(�IK)

∆ ; Γ ` box M : �A

∆ ; ∆⊥ `M⊥ : A
(�IK4)

∆ ; Γ ` box M : �A

∆ ; ∆⊥, z⊥ : �A `M⊥ : A
(�IGL)

∆ ; Γ ` fix z in box M : �A

Rules for S4:

(�var)
∆, u:A,∆′ ; Γ ` u : A

∆ ; · `M : A
(�IS4)

∆ ; Γ ` box M : �A

Rules for T: (�IK) and (�var)
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4.1 Complementary variables

Naively annotating the rule for K4 would yield

∆ ; ∆ `M : A

∆ ; Γ ` box M : �A

This, however, violates our convention that the two contexts are disjoint: the same
variables will appear both at modal and intuitionistic positions. To overcome this we
introduce the notion of complementary variables. Let V be the set of term variables
for our calculi. A complementation function is an involution on variables. That is, it
is a bijection (−)⊥ : V

∼=−→ V which happens to be its own inverse:(
x⊥
)⊥

= x

The idea is that, if u is the modal variable representing some assumption in ∆, we
will write u⊥ to refer to a variable x, uniquely associated to u, and representing the
same assumption, but without a box in front. For technical reasons, we would like
that x⊥ is the same variable as u.

We extend the involution to contexts:

(x1 : A1, . . . , xn : An)⊥
def
= x⊥1 : A1, . . . , x

⊥
n : An

We also inductively extend (−)⊥ to terms, with the exception that it shall not change
anything inside a box (−) construct. It also need not change any bound modal vari-
ables, as for K4 and GL these shall only occur under box (−) constructs:

(λx : A.M)⊥
def
= λx⊥:A. M⊥

(MN)⊥
def
= M⊥N⊥

〈M,N〉 def
= 〈M⊥, N⊥〉

(πi(M))⊥
def
= πi(M

⊥)

(box M)⊥
def
= box M

(let box u⇐M in N)⊥
def
= let box u⇐M⊥ in N⊥

We use this machinery to modify the rule, so as to maintain disjoint contexts. When
we encounter an introduction rule for the box and the context ∆ gets ‘copied’ to
the intuitionistic position, we will complement all variables in the copy, as well as all
variables occuring in M , but not under any box (−) constructs:

∆ ; ∆⊥ `M⊥ : A

∆ ; Γ ` box M : �A
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As an example, here is the derivation that · ;�A ` �(A ∧�A):

· ; x : �A ` x : �A

u : A ; u⊥ : A ` u⊥ : A

u : A ; u⊥ : A ` u⊥ : A

u : A ; u⊥ : A ` box u : �A

u : A ; u⊥ : A ` 〈u⊥, box u〉 : A×�A

u : A ; x : �A ` box 〈u, box u〉 : �(A×�A)

· ; x : �A ` let box u⇐ x in box 〈u, box u〉 : �(A×�A)

We extend complementation to finite sets of variables, by setting

{x1, . . . , xn}
def
= x⊥1 , . . . , x

⊥
n

It is not hard to see that (a) the involutive behaviour of (−)⊥ extends to all these
extensions and (b) some common operations commute with (−)⊥.

Lemma 2.

1. For any context ∆,
(
∆⊥
)⊥ ≡ ∆.

2. For any finite set of variabels S,
(
S⊥
)⊥

= S.

3. For any context ∆, Vars
(
∆⊥
)

= (Vars (∆))⊥.

4. If S, T are finite sets of variables, then

S ⊆ T =⇒ S⊥ ⊆ T⊥

Proof. Trivial.

There is a simple relationship between complementation and substitution:

Theorem 7. If u⊥ 6∈ fv (M) then

(M [N/u])⊥ ≡M⊥[N,N⊥/u, u⊥]

Proof. By induction on M .

1. If M is a variable, then by assumption M 6≡ u⊥. There are then two cases:

(a) M ≡ u: then

(M [N/u])⊥ ≡ N⊥ ≡ u⊥[N,N⊥/u, u⊥] ≡M⊥[N,N⊥/u, u⊥]
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(b) M ≡ v 6≡ u, u⊥: then

(M [N/u])⊥ ≡ v⊥ ≡ v⊥[N,N⊥/u, u⊥] ≡M⊥[N,N⊥/u, u⊥]

2. If M ≡ λx:A.M ′, then, assuming x 6≡ u, u⊥, then we use the IH to calculate
that

(M [N/u])⊥ ≡ λx⊥.(M ′[N/u])⊥ ≡ λx⊥.M ′⊥[N,N⊥/u, u⊥] ≡ (λx.M ′)⊥[N,N⊥/u, u⊥]

3. IfM is an applicationM1M2 or a tuple 〈M1,M2〉, we use the IH twice. Similarly
if it is a projection πi(M ′).

4. If M ≡ box M ′, we calculate:

(M [N/u])⊥ ≡ (box (M ′[N/u]))
⊥ ≡ box (M ′[N/u]) ≡ (box M ′)⊥[N,N⊥/u, u⊥]

where the last step follows because box M ′ ≡ (box M ′)⊥, and u⊥ 6∈ fv (M ′).

5. If M ≡ let box v ⇐M1 in M2, we calculate

(M [N/u])⊥ ≡ let box v ⇐ (M1[N/u])⊥ in (M2[N/u])⊥

≡ let box v ⇐M⊥
1 [N,N⊥/u, u⊥] in M⊥

2 [N,N⊥/u, u⊥]

≡
(
let box v ⇐M⊥

1 in M⊥
2

)
[N,N⊥/u, u⊥]

≡M⊥[N,N⊥/u, u⊥]

To conclude our discussion of complementary variables, we carefully define what
it means for a pair of contexts to be well-defined.

Definition 1 (Well-defined contexts). A pair of contexts ∆ ; Γ is well-defined just if

1. They are disjoint, i.e. Vars (∆) ∩Vars (Γ) = ∅.

2. In the cases of K4 and GL, no two complementary variables occur in the same
context; that is

Vars (Γ) ∩Vars
(
Γ⊥
)

= ∅

Vars (∆) ∩Vars
(
∆⊥
)

= ∅

The second condition is easy to enforce, and will prove useful in some technical
results found in the sequel.
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4.2 Free variables: boxed and unboxed

Definition 2 (Free variables).

1. The free variables fv (M) of a termM are defined by induction on the structure
of the term:

fv (x)
def
= {x}

fv (MN)
def
= fv (M) ∪ fv (N)

fv (λx:A. M)
def
= fv (M)− {x}

fv (〈M,N〉) def
= fv (M) ∪ fv (N)

fv (πi(M))
def
= fv (M)

fv (box M)
def
= fv (M)

fv (let box u⇐M in N)
def
= fv (M) ∪ (fv (N)− {u})

and for GL we replace the clause for box (−) with

fv (fix z in box M)
def
= fv (M)− {z}

2. The unboxed free variables fv0 (M) of a term are those that do not occur under
the scope of a box (−) construct. They are formally defined by replacing the
clause for box (−) in the definition of free variables by

fv0 (box M)
def
= ∅

and, for GL,
fv0 (fix z in box M)

def
= ∅

3. The boxed free variables fv≥1 (M) of a term M are those that do occur under
the scope of a box (−) construct. They are formally defined by replacing the
clauses for variables and for box (−) in the definition of free variables by the
following

fv≥1 (x)
def
= ∅

fv≥1 (box M)
def
= fv (M)

and, for GL,
fv≥1 (fix z in box M)

def
= fv (M)− {z}
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Theorem 8 (Free variables).

1. For every term M , fv (M) = fv0 (M) ∪ fv≥1 (M).

2. For every term M , fv0

(
M⊥) = fv0 (M)⊥.

3. For every term M , fv≥1

(
M⊥) = fv≥1 (M).

4. If S ∈ {DK,DK4,DGL} and ∆ ; Γ `S M : A, then

fv0 (M) ⊆ Vars (Γ)

fv≥1 (M) ⊆ Vars (∆)

5. If S ∈ {DS4,DT} and ∆ ; Γ `S M : A, then

fv0 (M) ⊆ Vars (Γ) ∪Vars (∆)

fv≥1 (M) ⊆ Vars (∆)

6. If ∆ ; Γ, x:A,Γ′ `M : A and x 6∈ fv (M), then ∆ ; Γ,Γ′ `M : A.

7. If ∆, u:A,∆′ ; Γ `M : A and u 6∈ fv (M), then ∆,∆′ ; Γ `M : A.

Proof.

1. Trivial induction on M .

2. Trivial induction on M .

3. Trivial induction on M .

4. By induction on the derivation of ∆ ; Γ `S M : A. We show the cases for (�I).
The first statement follows trivially, as fv0 (box M) = fv0 (fix z in box M) =

∅ ⊆ Vars (Γ), so it remains to show the second statement.
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For (�IK), we have

fv≥1 (box M)

= { definition }

fv (M)

= { (1) }

fv0 (M) ∪ fv≥1 (M)

⊆ { IH, twice }

Vars (∆) ∪Vars (·)

= { definition }

Vars (∆)

For (�IK4), we have

fv≥1 (box M)

= { definition }

fv (M)

= { (1) }

fv0 (M) ∪ fv≥1 (M)

= {Lemma 2(2) }(
fv0 (M)⊥

)⊥
∪ fv≥1 (M)

⊆ { (2), (3), and Lemma 2(4) }(
fv0

(
M⊥))⊥ ∪ fv≥1

(
M⊥)

⊆ { IH twice, and Lemma 2(4) }(
Vars

(
∆⊥
))⊥ ∪Vars (∆)

= {Lemma 2(2) }

Vars (∆)

by the IH.
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For (�IK4), we have

fv≥1 (fix z in box M)

= { definition }

fv (M)

= { (1) }

(fv0 (M) ∪ fv≥1 (M))− {z⊥}

= {Lemma 2(2) }((
fv0 (M)⊥

)⊥
∪ fv≥1 (M)

)
− {z⊥}

⊆ { (2), (3), Lemma 2(4), and monotonicity of subtraction. }((
fv0

(
M⊥))⊥ ∪ fv≥1

(
M⊥))− {z⊥}

⊆ { IH twice, and Lemma 2(4) and monotonicity of subtraction. }((
Vars

(
∆⊥
)
∪ {z}

)⊥ ∪Vars (∆)
)
− {z⊥}

= {Lemma 2(2) }(
Vars (∆) ∪ {z⊥} ∪Vars (∆)

)
− {z⊥}

= { z⊥ 6∈ Vars (∆) }

Vars (∆)

5. By induction on the derivation of ∆ ; Γ `S M : A. We show the case for (�IS4);
the first statement is trivial, so we show the second:

fv≥1 (box M)

= { definition }

fv (M)

= { (1) }

fv0 (M) ∪ fv≥1 (M)

⊆ { IH, twice }

(Vars (∆) ∪Vars (·)) ∪Vars (∆)

= { definition }

Vars (∆)

6. Trivial induction on the typing derivation for M .

7. Trivial induction on the typing derivation for M .
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4.3 Structural theorems

As expected, our systems satisfy the standard menu of structural results: weakening,
contraction, exchange, and cut rules are admissible.

Theorem 9 (Structural & Cut). The following rules are admissible in all systems:

1. (Weakening)

∆ ; Γ,Γ′ `M : A

∆ ; Γ, x:A,Γ′ `M : A

2. (Exchange)

∆ ; Γ, x:A, y:B,Γ′ `M : C

∆ ; Γ, y:B, x:A,Γ′ `M : C

3. (Contraction)

∆ ; Γ, x:A, y:A,Γ′ `M : A

∆ ; Γ, w:A,Γ′ `M [w,w/x, y] : A

4. (Cut)

∆ ; Γ ` N : A ∆ ; Γ, x:A,Γ′ `M : A

∆ ; Γ,Γ′ `M [N/x] : A

Proof. All by induction on the typing derivation of M . Most cases are standard. As
an example, we show the case of (�IK) for weakening. Suppose ∆ ; Γ,Γ′ `M : A by
(�IK). Then M ≡ box M ′ and A ≡ �A′ and · ; ∆ ` M ′ : A′. A single use of (�IK)

then yields ∆ ; Γ, x:A,Γ′ `M : A.

Theorem 10 (Modal Structural). The following rules are admissible:

1. (Modal Weakening)
∆,∆′ ; Γ `M : C

∆, u:A,∆′ ; Γ `M : C

2. (Modal Exchange)
∆, x:A, y:B,∆′ ; Γ `M : C

∆, y:B, x:A,∆′ ; Γ `M : C

3. (Modal Contraction)

∆, x:A, y:A,∆′ ; Γ `M : C

∆, w:A,∆′ ; Γ `M [w,w/x, y] : C

Proof. All by induction on the typing derivation of M . Most cases are standard. As
an example, we discuss the case of (�I) for weakening.

If ∆,∆′ ; Γ ` M : A by (�IK), then M ≡ box N and A ≡ �B for N and B such
that · ; ∆,∆′ ` N : B. We use Theorem 9 to deduce that · ; ∆, x:A,∆′ ` N : B, and
then a single use of (�IK) yields the result.

If ∆,∆′ ; Γ `M : A by (�IK4), then M ≡ box N and A ≡ �B for N and B such
that ∆,∆′ ;∆⊥,∆′⊥ ` N⊥ : B. By the IH, we have that ∆, u:A,∆′ ;∆⊥,∆′⊥ ` N⊥ : B.
We use Theorem 9 to deduce that ∆, u:A,∆′ ; ∆⊥, u⊥:A,∆′⊥ ` N⊥ : B, and then a
single use of (�IK4) yields the result.
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The cases for (�IGL) and (�IS4) are similar.

Theorem 11 (Modal Cut). The following rules are admissible:

1. (Modal Cut for DK)

· ; ∆ `DK N : A ∆, u:A,∆′ ; Γ `DK M : C

∆,∆′ ; Γ `DK M [N/u] : C

2. (Modal Cut for DK4)

∆ ; ∆⊥ `DK4 N
⊥ : A ∆, u:A,∆′ ; Γ `DK4 M : C

∆,∆′ ; Γ `DK4 M [N/u] : C

3. (Modal Cut for DGL)

∆ ; ∆⊥, z⊥ : �A `DGL N
⊥ : A ∆, u:A,∆′ ; Γ `DGL M : C

∆,∆′ ; Γ `DGL M [N [fix z in box N/z] /u] : C

4. (Modal Cut for DS4)

∆ ; · `DS4 N : A ∆, u:A,∆′ ; Γ `DS4 M : C

∆,∆′ ; Γ `DS4 M [N/u] : C

5. (Modal Cut for DT)

· ; ∆ `DT N : A ∆, u:A,∆′ ; Γ `DT M : C

∆,∆′ ; Γ `DT M [N/u] : C

Proof. By induction on the typing derivation of M .
We show the case for (�I), and—for DS4 and DT—the case for modal variables

(�var).

1. (DK) If ∆, u:A,∆′ ; Γ `M : C by (�IK), then M ≡ box M ′, C ≡ �C ′, and

· ; ∆, u:A,∆′ `M ′ : C ′

By Theorem 9, we have

· ; ∆,∆′ `M ′[N/u] : C

and hence ∆,∆′ ; Γ ` box (M ′[N/u]) : �C ′ ≡ C by an application of (�IK).
But

box (M ′[N/u]) ≡ (box M ′) [N/u] ≡M [N/u]

and hence we have the result.
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2. (DK4) If ∆, u:A,∆′ ; Γ `M : C by (�IK4), then M ≡ box M ′, C ≡ �C ′, and

∆, u:A,∆′ ; ∆⊥, u⊥:A,∆′⊥ `M ′⊥ : C ′

By the IH, we have

∆,∆′ ; ∆⊥, u⊥:A,∆′⊥ `M ′⊥[N/u] : C ′

and by Theorem 9, that yields

∆,∆′ ; ∆⊥,∆′⊥ `M ′⊥[N,N⊥/u, u⊥] : C ′

But, by Theorem 7, we have that M ′⊥[N,N⊥/u, u⊥] ≡ (M ′[N/u])⊥, and hence
by a use of (�IK4), we have

∆,∆′ ; Γ ` box (M ′[N/u]) : �C ′ ≡ C

and hence the result.

3. (DGL) If ∆, u:A,∆′ ; Γ `M : C by (�IGL), then M ≡ fix y in box M ′, C ≡ �C ′,
and

∆, u:A,∆′ ; ∆⊥, u⊥:A,∆′⊥, y⊥ : �C ′ `M ′⊥ : C ′

Write N∗
def
= N [fix z in box N/z]. By the first premise and the IH, we have that

∆,∆′ ; ∆⊥, u⊥:A,∆′⊥, y⊥ : �C ′ `M ′⊥ [N∗/u] : C ′

We now need to substitute for u⊥. By an application of (�IGL) to the first
premise we have

∆ ; ∆⊥ ` fix z in box N : �A

and hence by Theorem 9 we substitute this into the first premise itself to get

∆ ; ∆⊥ ` N⊥[fix z in box N/z⊥] : A

But N⊥∗ ≡ N⊥[fix z in box N/z⊥], so by weakening and Theorem 9, we obtain

∆,∆′ ; ∆⊥,∆′⊥, y⊥ : �C `M ′⊥[N∗, N
⊥
∗ /u, u

⊥] : C ′

But by well-definedness of contexts, u⊥ 6∈ fv (M), so by Theorem 7 we have
thatM ′⊥[N∗, N

⊥
∗ /u, u

⊥] ≡ (M ′[N∗/u])⊥, and hence by a use of (�IGL), we have

∆,∆′ ; Γ ` fix y in box (M ′[N∗/u]) : �C ′ ≡ C

and hence the result.
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4. (DS4)

• If ∆, u:A,∆′ ; Γ `M : C by (�IS4) then M ≡ box M ′ and C ≡ �C ′ with

∆, u:A,∆′ ; · `M ′ : C

The IH then yields ∆,∆′ ; · ` M ′[N/u] : C, and a single use of (�IS4)
yields the result.

• If ∆, u:A,∆′ ; Γ ` M : C by (�var) then M ≡ v for some v such that
(v : C) ∈ ∆, u:A,∆′. There are two cases:

– u ≡ v: then M [N/u] ≡ N and A ≡ C. The premise ∆ ; · ` N : A

along with weakening for both contexts yields the result.

– u 6≡ v: then M [N/u] ≡ M , and u does not occur in M . It is easy to
show that if ∆, u:A,∆′ ; Γ `M : C and u 6∈ fv≥1 (M) then ∆,∆′ ; Γ `
M : C.

5. (DT)

• If ∆, u:A,∆′ ; Γ `M : C by (�IK) then we proceed as in the case of DK.

• If ∆, u:A,∆′ ; Γ ` M : C by (�var) then M ≡ v for some v such that
v : C ∈ ∆, u:A,∆′. There are two cases:

– u ≡ v: then M [N/u] ≡ N and A ≡ C. The premise · ; ∆ ` N : A

along with Theorem 12 yields ∆ ; · ` N : A. A series of weakenings
for both contexts then yields the result.

– u 6≡ v: then M [N/u] ≡ M , and u does not occur in M . It is easy to
show that if ∆, u:A,∆′ ; Γ `M : C and u 6∈ fv≥1 (M) then ∆,∆′ ; Γ `
M : C.

Finally, in the cases where the T axiom is present, we may move variables from
the intuitionstic to the modal context.

Theorem 12 (Modal Dereliction). If S ∈ {DS4,DT}, then the following rule is
admissible:

∆ ; Γ,Γ′ `M : A

∆,Γ ; Γ′ `M : A
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Proof. By induction on the derivation of ∆ ; Γ,Γ′ ` M : A. Most cases are straight-
foward, except (var) and (�IS4)/(�IK)

If the judgment holds by (var), thenM ≡ x for some (x : A) ∈ Γ,Γ′. If (x : A) ∈ Γ,
we use (�var) to conclude that ∆,Γ ; Γ′ ` x : A. If (x : A) ∈ Γ′, then another use of
(var) suffices.

If the judgment holds by (�IS4) then M ≡ box M ′ and A ≡ �A′ for some M ′, A′

with ∆ ; · ` M ′ : A′. Repeated use of weakening for the modal context followed by
an application of (�IS4) yields the result.

The case of (�IK) is similar, but uses weakening for the intuitionistic context.

4.4 Equivalence with Hilbert systems

In this section we prove that our dual-context λ-calculi correspond to the negative
fragment of the Hilbert systems for the logics we defined in §2. An extension to
the full fragment should be straightforward. This ties the knot with respect to the
Curry-Howard isomorphism.

The translation under which this equivalence is shown is indeed the same one that
we used in §3 to derive our calculi:

∆ ; Γ `M : A  �∆̂, Γ̂ `H A

The only difference is that now the proof term M is visible, and we write Γ̂ to mean
the context Γ with all the variables removed: if Γ ≡ x1 : A1, . . . , xn : An, then

Γ̂
def
= A1, . . . , An

One direction of the proof involves showing that the axioms are indeed derivable
in the dual-context systems. The other direction involves showing the admissibility
of the dual-context rules in the Hilbert systems.

4.4.1 Hilbert to Dual

First and foremost, we need to show that axiom (K) is derivable. It is easy to check
that the term

axK
def
= λf : �(A→ B). λx : �A. let box g ⇐ f in let box y ⇐ x in box (g y)

has type �(A→ B)→ �A→ �B in all our systems. For the case of GL, we instead
use

axDGLK
def
= λf : �(A→ B). λx : �A. let box g ⇐ f in let box y ⇐ x in fix z in box (g y)
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It is also not hard to see that in DK4 and DS4 the terms

ax4
def
= λx : �A. let box y ⇐ x in box (box y)

have type �A→ ��A; that is, axiom 4.
In the case of DGL, we need to show that the term

axGL
def
= λx : �(�A→ A). let box f ⇐ x in (fix z in box (f z))

has type �(�A → A) → �A. The most interesting part of the derivation can be
found in Figure 4.2.

Figure 4.2: Derivation of the Gödel-Löb axiom in DGL

· · · ` x : �(�A→ A)

···
∆, f : �A→ A ; ∆, f⊥ : �A→ A, z⊥ : �A ` f⊥ z⊥ : A

∆, f : �A→ A ; Γ, x : �(�A→ A) ` fix z in box (f z) : �A

∆ ; Γ, x : �(�A→ A) ` let box f ⇐ x in (fix z in box (f z)) : �(�A→ A)→ �A

∆ ; Γ ` λx : �(�A→ A). let box f ⇐ x in (fix z in box (f z)) : �(�A→ A)→ �A

Finally, in DT and DS4, the term

axT
def
= λx : �A. let box y ⇐ x in y

has type �A→ A, i.e. axiom T.
With all that, we can show:

Theorem 13 (Hilbert to Dual). If Γ is a well-defined context and Γ̂ `L A, then there
exists a term M such that · ; Γ `DL M : A.

Proof. By induction on the derivation of Γ̂ `L A. In the case of the assumption rule,
we use (var) to type the associated variable in Γ̂. The cases for axioms of IPL are
easy. For the modal axioms, we use the terms derived above. For modus ponens, we
use application, i.e. (→ E).

This leaves the case of necessitation. Suppose Γ̂ `L A. Then A ≡ �A′, and `L A′.
By the IH, there is a termM ′ such that · ; · `DL M ′ : A′. We then use the appropriate
introduction rule for box—e.g. (�IK), and so on—to yield the result.
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4.4.2 Dual to Hilbert

For the opposite direction, the essence lies in showing that the rules of the dual-
context are admissible in the Hilbert system—that is, after erasing the proof terms.
We have done most of the required work in §2.5.2.

Theorem 14 (Dual to Hilbert). If ∆ ; Γ `DL M : A then �∆̂, Γ̂ `L A.

Proof. By induction on the derivation of ∆ ; Γ `DL M : A.
If the premise holds by (var), then we use the assumption rule of the Hilbert

system. If the last step in the derivation of the premise is the rule (→ I), we use the
IH followed by the Deduction Theorem (Theorem 2). If the last step is by (→ E),
we use modus ponens. It is simple to translate the rules that pertain to the product,
namely (×I) and (×Ei) to uses of the IPL axioms pertaining to the product along
with modus ponens. It is also not hard to see that, under the given translation, (�E)

can also be matched by a use of the IH along with an invocation of the admissibility
of cut for Hilbert systems (Theorem 1). Uses of the modal variable rule (�var) can
be imitated by a use of the assumption rule, modus ponens, and an instance of the
T axiom.

This leaves the introduction rules for the box. The rule (�IK) is matched with
Scott’s rule (Theorem 3). The rule (�IK4) is matched with the Four rule (Theorem
5). The rule (�IGL) is matched with the generalized Löb rule (Theorem 6). Finally,
the rule (�IS4) is matched with the corollary to the Four rule (Corollary 1).
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Chapter 5

Reduction

In this chapter we study a notion of reduction for the dual-context calculi we intro-
duced in §4. Our reduction relation,

−→ ⊆ Λ× Λ

is defined in Figure 5.1, and it is essentially the standard notion of reduction previously
considered by Pfenning and Davies (2001). A similar notion of reduction was studied
in the context of Dual Intuitionistic Linear Logic (DILL) by Ohta and Hasegawa
(2006). Unlike the work in op. cit. we do not study the full reduction including η-
contractions and commuting conversions, and hence our work does not immediately
yield a decision procedure for the equality that we will study in §8.1. However, the
necessary extensions to the full reduction should be straightforward.

We first show that typing is preserved under reduction, and that reduction is
largely preserved under complementation—that is, if the types are right. Further-
more, we show that the notion under consideration is confluent. We then briefly
introduce the method of candidates of reducibility, and show that it can be used to
demonstrate strong normalization. Finally, we discuss and introduce some commuting
conversions, which are necessary for the subformula property to hold.

5.1 Preservation theorems

Theorem 15 (Subject reduction). If ∆;Γ `M : A andM −→ N , then ∆;Γ ` N : A.

Proof. By induction on the generation of M −→ N . Most cases follow straightfor-
wardly from the IH. The cases for the β rules follow from Theorems 9 and 11.
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Figure 5.1: Reduction

Rules for all calculi:

(−→ β)
(λx:A. M)N −→M [N/x]

(−→ β×)
πi(〈M1,M2〉) −→Mi

M −→ N
(congπi)

πi(M) −→ πi(N)

Mi −→ Ni and M1−i ≡ N1−i
(cong×)

〈M0,M1〉 −→ 〈N0, N1〉

M −→ N
(congλ)

λx:A. M −→ λx:A. N

M −→ N
(congbox)

box M −→ box N

M −→ N
(app1)

MP −→ NP

P −→ Q
(app2)

MP −→MQ

M −→ N
(congfix)

fix z in box M −→ fix z in box N

M −→ N
(letbox1)

let box u⇐M in P −→ let box u⇐ N in P

P −→ Q
(letbox2)

let box u⇐M in P −→ let box u⇐M in Q

Beta rule for non-GL:

(−→ β�)
let box u⇐ box M in N −→ N [M/u]

Beta rule for GL:

(−→ βGL)
let box u⇐ fix z in box M in N −→ N [M [fix z in box M/z] /u]
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The following theorem shall prove useful toward the end of the chapter, where we
show that strong normalization satisfies the properties necessary for the candidates
of reducibility method to apply.

Theorem 16 (Complement reduction). If ∆ ; ∆⊥ `DK4 M⊥ : A or ∆ ; ∆⊥, z⊥ :

�A `DGL M
⊥ : A, then M −→ N implies M⊥ −→ N⊥.

Proof. By induction on the generation of M −→ N . Most cases follow straightfor-
wardly from the IH. In some cases we need to use renaming, weakening and then
strengthening. The rest we show.

Case(−→ β). It is easy to see that

((λx:A. M)N)⊥ ≡ (λx⊥:A. M⊥)N⊥ −→M⊥[N⊥/x]

But we have ∆ ; ∆⊥, x⊥:A `M⊥ : B for some A and B. Thus, x⊥ 6∈ Vars (∆),
and hence, by Theorem 8(4), x⊥ 6∈ fv≥1

(
M⊥), which is equal to fv≥1 (M) by

Theorem 8(3). Also, x⊥ 6∈ fv0 (M), for then we would have x ∈ fv0

(
M⊥) and

thus x ∈ Vars
(
∆⊥
)
, contradicting well-formedness of contexts. It thus follows

that x⊥ 6∈ fv (M), and hence, by Theorem 7,

(M [N/x])⊥ ≡M⊥[N,N⊥/x, x⊥] ≡M⊥[N⊥/x⊥]

where the last α-equivalence follows because x is not free in M⊥, for as x⊥ 6∈
Vars

(
∆⊥
)
we have x 6∈ Vars (∆) ∪ Vars

(
∆⊥
)
, and thus x 6∈ fv

(
M⊥), by

Theorem 8(1, 4). The reasoning is similar for GL.

Case(−→ β�). It is easy to see that

(let box u⇐ box M in N)⊥ ≡ let box u⇐ (box M)⊥ in N⊥

≡ let box u⇐ box M in N⊥

−→ N⊥[M/u]

It now suffices to show that (a) u⊥ 6∈ fv (N), and that (b) u⊥ 6∈ fv
(
N⊥
)
. For,

by (a), Theorem 7 applies and hence

(N [M/u])⊥ ≡ N⊥[M,M⊥/u, u⊥]

But then, as u⊥ 6∈ fv
(
N⊥
)
, the RHS is α-equivalent to N⊥[M/u], concluding

the argument. Luckily, the restrictions we have put on contexts put together
with the fact that

∆, u:A ; ∆⊥ ` N⊥ : A
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suffice to yield the two desiderata.

For (a): by well-formedness of contexts, as u ∈ Vars (∆, u:A), then u⊥ 6∈
Vars (∆, u:A), and hence, u⊥ 6∈ fv≥1

(
N⊥
)

= fv≥1 (N). Also, u 6∈ Vars
(
∆⊥
)
,

so u 6∈ fv0

(
N⊥
)
, and hence u⊥ 6∈ fv0 (N). It follows that u⊥ 6∈ fv (N).

For (b): by well-formedness of contexts again, u 6∈ Vars (∆) and u⊥ 6∈ Vars (∆).
Hence u⊥ 6∈ Vars

(
∆⊥
)
∪ Vars (∆), and thus by Theorem 8 we have u⊥ 6∈

fv
(
N⊥
)
.

Case(−→ βGL). Similarly to (−→ β�).

5.2 Confluence

We will prove that

Theorem 17. The reduction relation −→ is confluent.

There are many ways to do so. A classic strategy is to exploit the fact we prove
in the next section, viz. that −→ is strongly normalizing, and show local confluence
followed by an appeal to Newman’s Lemma (Newman, 1942; Mitchell, 1996; Terese,
2003).

We will use another method, namely that of parallel reduction, discovered by
Tait and Martin-Löf. The basic outline of this method for the untyped λ-calculus
is presented in (Barendregt, 1984, §3.2). Variations of it, as well as its history, are
covered by Takahashi (1995). The idea is simple: we will introduce a second notion
of reduction,

=⇒ ⊆ Λ× Λ

which we will ‘sandwich’ between reduction proper and its transitive closure:

−→ ⊆ =⇒ ⊆ −→∗

We will then show that =⇒ has the diamond property. By the above inclusions, the
transitive closure =⇒∗ of =⇒ is then equal to −→∗, and hence −→ is Church-Rosser.

In fact, we will follow Takahashi (1995) in doing something better: we will define
for each term M its complete development, M?. The complete development is intu-
itively defined by ‘unrolling’ all the redexes of M at once. We will then show that if

44



M =⇒ N , then N =⇒M?. M? will then suffice to close the diamond:

M

P Q

M?

The parallel reduction =⇒ is defined in Figure 5.2. It is immediate that

Lemma 3. =⇒ is reflexive.

Proof. It is easy to show that M =⇒M by induction on M .

We define

Definition 3 (Complete development). The complete development M? of a term M

is defined by the following clauses:

x?
def
= x

(〈M,N〉)? def
= 〈M?, N?〉

(πi(〈M1,M2〉))?
def
= M?

i

(πi (M))?
def
= πi(M

?)

(λx:A. M)?
def
= λx:A. M?

((λx:A. M)N)?
def
= M?[N?/x]

(MN)?
def
= M?N?

(box M)?
def
= box M?

(let box u⇐ box M in N)?
def
= N?[M?/u]

(let box u⇐M in N)?
def
= let box u⇐M? in N?

and, in the case of GL,

(fix z in box M)?
def
= fix z in box M?

(let box u⇐ fix z in box M in N)?
def
= N? [M?[fix z in box M?/z]/u]

First, a little lemma capturing the essence of parallel reduction:

Lemma 4. If M =⇒ N and P =⇒ Q, then

M [P/x] =⇒ N [Q/x]
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Figure 5.2: Parallel Reduction

Rules for all calculi:

(var)
x =⇒ x

M =⇒ N P =⇒ Q
(→ β)

(λx:A. M)P =⇒ N [Q/x]

Mi =⇒ N
(×β)

πi(〈M1,M2〉) =⇒ N

M =⇒ N
(congπi)

πi(M) =⇒ πi(N)

M1 =⇒ N1 M2 =⇒ N2
(cong×)

〈M1,M2〉 =⇒ 〈N1, N2〉

M =⇒ N
(congλ)

λx:A. M =⇒ λx:A. N

M =⇒ N
(box)

box M =⇒ box N

M =⇒ N P =⇒ Q
(app)

MP =⇒ NQ

M =⇒ N
(congfix)

fix z in box M =⇒ fix z in box N

M =⇒ N P =⇒ Q
(letbox)

let box u⇐M in P =⇒ let box u⇐ N in Q

Beta rule for non-GL:

M =⇒ N P =⇒ Q
(�β)

let box u⇐ box P in M =⇒ N [Q/u]

Beta rule for GL:

M =⇒ N P =⇒ Q
(�βGL)

let box u⇐ fix z in box P in M =⇒ N [Q [fix z in box Q/z] /u]
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Proof. By induction on the generation of M =⇒ N . The cases for congruence rules
and (=⇒ β×) follow simply by the IH, so we omit them.

Case(var). Then M =⇒ N is z =⇒ z for some z. If z ≡ x, we have M [P/x] ≡
P and N [Q/x] ≡ Q, and the result follows because P =⇒ Q. Otherwise,
M [P/x] ≡ z ≡ N [Q/x] and the result follows by Lemma 3.

Case(→ β). Then (λx′:A. M)N =⇒ N ′[M ′/x′], where M =⇒ M ′ and N =⇒
N ′. Then

((λx′:A. M)N) [P/x] ≡ (λx′:A. M [P/x])(N [P/x])

But, by the IH, M [P/x] =⇒ M ′[Q/x] and N [P/x] =⇒ N ′[Q/x]. So, by the
rules (congλ) and (app), and then rule (=⇒ β), we have

(λx′:A. M [P/x])(N [P/x]) =⇒M ′[Q/x] [N ′[Q/x]/x′]

But this last is α-equivalent to (M ′[N ′/x′]) [Q/x] by the substitution lemma.

Case(�β). Similar to (=⇒ β).

Case(�βGL). Then

let box u⇐ fix z in box M in N =⇒ N ′[M ′[fix z in box M ′/z]/u]

with M =⇒M ′ and N =⇒ N ′. We have

(let box u⇐ fix z in box M in N) [P/x]

≡ let box u⇐ fix z in box M [P/x] in N [P/x]

=⇒ N ′[Q/x] [M ′[Q/x] [fix z in box M ′[Q/x]/z] /u]

where the last step follows because, by the IH, M [P/x] =⇒ M ′[Q/x] and
N [P/x] =⇒ N ′[Q/x]. This last—by two uses of the substitution lemma—is
α-equivalent to

N ′[M ′[fix z in box M ′/z]/u][Q/x]

And here is the main result:

Theorem 18. If M =⇒ P , then P =⇒M?.

Proof. By induction on the generation of M =⇒ P . The case of the variable rule is
trivial, and the cases of congruence rules follow from the IH. We show the rest.
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Case(→ β). Then we have (λx:A. M)N =⇒ M ′[N ′/x], with M =⇒ M ′ and
N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. Then, by Lemma 4,
M ′[N ′/x] =⇒M?[N?/x] ≡ (λx:A. M)N)?.

Case(×β). Then we have πi(〈M1,M2〉) =⇒ M ′
i , with Mi =⇒ M ′

i . By the IH,
M ′

i =⇒M?
i ≡ (πi(〈M1,M2〉))?.

Case(). Then we have

let box u⇐ box M in N =⇒ N ′[M ′/u]

where M =⇒ M ′ and N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. It
follows that

N ′[M ′/u] =⇒ N?[M?/u] ≡ (let box u⇐ box M in N)?

by Lemma 4.

Case(�βGL). Then we have

let box u⇐ fix z in box M in N =⇒ N ′[M ′[fix z in box M ′/z]/u]

with M =⇒ M ′ and N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. It
follows by (congfix) that fix z in box M ′ =⇒ fix z in box M?, and thus, by Lemma
4, that

M ′[fix z in box M ′/z] =⇒M?[fix z in box M?/z]

Hence, by Lemma 4 again, we have that

N ′[M ′[fix z in box M ′/z]/u] =⇒ N?[M?[fix z in box M?/z]/u]

5.3 Strong Normalization

In this section, we will prove that

Theorem 19. The reduction relation −→ is strongly normalizing.

We shall do so by using the method of candidates of reducibility (candidats de
reducibilité), which is a kind of induction on types, rather closely related to the tech-
nique of logical relations—or, in this particular case, logical predicates. ‘Candidats’
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was invented primarily by Girard (1972) to prove strong normalization for System
F, which is covered in (Girard et al., 1989, §14). The particular variant we use is a
mixture of the versions of Girard and Koletsos (1985). An elementary presentation
of the latter may be found in (Gallier, 1995). For a discussion of other closely related
variants see Gallier (1990).

The overall structure of the method is the following: Suppose we have a family of
nonempty sets of typing judgments,

P = {PA}A

indexed by the type A they assign to the term they carry. We will state six properties,
(P0)–(P5), that such a family should satisfy. In case it does indeed satisfy them, we
show that PA contains all judgments ∆ ; Γ `M : A with type A.

In our case, we show that the family of derivable typing judgments

SN def
= {SNA}A

satisfies the properties (P0) through (P5), where SNA consists of all the judgments
∆;Γ `M : A just ifM is strongly normalizing with respect to −→ . Then SNA = ΛA,
and all typable terms are strongly normalizing.

The requisite properties follow. If C ⊆ PA, we write

∆ ; Γ `M ∈ C

as a shorthand for (∆ ; Γ `M : A) ∈ C.

Definition 4.

1. A term is a I-term just if it is an introduction form, i.e. of the form

λx:A. M, 〈M,N〉, box M, fix z in box M (for GL only)

2. A term is a simple term1 just if it is a variable or an elimination form, i.e. of
the form

x, MN, πi(M), let box u⇐M in N

3. A stubborn term is a simple term that is either a normal form, or a term that
does not reduce to a I-term.

1Girard (Girard et al., 1989) calls these neutral terms, which also means something entirely
different in the programming language literature.

49



Definition 5 (Properties P0-P3). We define the following properties pertaining to
the family P .

(P0) (a) ∆ ; Γ `M ∈ PA and Γ v Γ′ imply ∆ ; Γ′ `M ∈ PA

(b) ∆ ; Γ `M ∈ PA and ∆ v ∆′ imply ∆′ ; Γ `M ∈ PA

(c) (for T and S4 only) ∆ ; Γ,Γ′ `M ∈ PA implies ∆,Γ ; Γ′ `M ∈ PA

(P1) ∆ ; Γ ` x ∈ PA for all variables x.

(P2) M ∈ PA and M −→ N imply N ∈ PA.

(P3) For simple terms M ,

(a) If

– ∆ ; Γ `M ∈ PA→B,
– ∆ ; Γ ` N ∈ PA, and
– whenever M −→∗ λx:A.M ′ then ∆ ; Γ ` (λx:A.M ′)N ∈ PB

then this implies ∆ ; Γ `MN ∈ PB.

(b) If

– ∆ ; Γ `M ∈ PA×B, and
– whenever M −→∗ 〈M1,M2〉 then ∆ ; Γ ` π1(〈M1,M2〉) ∈ PA and

∆ ; Γ ` π2(〈M1,M2〉) ∈ PB,

then this implies that ∆ ; Γ ` π1(M) ∈ PA and ∆ ; Γ ` π2(M) ∈ PB.

Definition 6 (Properties P4-P5).

(P4) (a) If ∆ ; Γ, x:A `M ∈ PB then ∆ ; Γ ` λx:A. M ∈ PA→B.

(b) ∆ ; Γ `M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` 〈M,N〉 ∈ PA×B.

(c)

i. (for K and T) · ; ∆ `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A
ii. (for K4) ∆ ; ∆⊥ `M⊥ ∈ PA implies ∆ ; Γ ` box M ∈ P�A
iii. (for GL) ∆ ; ∆⊥, z⊥ : �A ` M⊥ ∈ PA implies ∆ ; Γ ` fix z in box M ∈

P�A

iv. (for S4) ∆ ; · `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A

(P5) (a) If ∆′ w ∆ and Γ′ w Γ satisfy ∆′ ; Γ′ ` N ∈ PA and ∆′ ; Γ′ `M [N/x] ∈ PB,
then ∆′ ; Γ′ ` (λx:A. M)N ∈ PB.

50



(b) ∆ ; Γ ` M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` π1(〈M,N〉) ∈ PA and
∆ ; Γ ` π2(〈M,N〉) ∈ PB.

(c) i. (for non-GL) If we have ∆ ; Γ ` M ∈ P�A and ∆, u:A ; Γ ` N ∈ PC ,
and whenever M −→∗ box Q then ∆ ; Γ ` N [Q/u] ∈ PC , then we have
that ∆ ; Γ ` let box u⇐M in N ∈ PC .

ii. (for GL only) If we have ∆;Γ `M ∈ P�A and ∆, u:A;Γ ` N ∈ PC , and
wheneverM −→∗ fix z in box Q then ∆;Γ ` N [Q[fix z in box Q/z]/u] ∈
PC , then we have that ∆ ; Γ ` let box u⇐M in N ∈ PC .

Showing that these properties indeed guarantee that PA = ΛA consists of a labo-
rious inductive argument that employs multiple lemmata. The full argument in all
its tediousness may be found in §6. In this chapter we shall content ourselves by
showing that the family SN indeed satisfies the properties (P0)-(P5).

In carrying out the proof we shall often proceed by induction on d(M), the depth
of the term M . Let there be a tree consisting of M and all its reducts, with an edge
from reduct M1 to reduct M2 just if M1 −→M2. This is the reduction tree of M . As
M has at most finite redexes, the reduction tree is finitely branching: there can only
be a finite number of terms Mi such that N −→∗ Mi for any term N . Furthermore, if
M is strongly normalizing, then the reduction tree has no infinite paths. By König’s
Lemma, the tree is then finite, and d(M) is the depth of the reduction tree ofM—i.e.
the longest path in the tree that is rooted at M .

(P0)–(P2) Trivial.

(P3)

(a) We prove that MN is strongly normalizing, by induction on d(M) +d(N).

Suppose MN −→ P . As M is simple, MN cannot be a redex, so it is of
the form P ≡ M ′N ′ such that either (a) M −→ M ′ and N ′ ≡ N , or (b)
N −→ N ′ and M ′ ≡M .

If either M ′ is simple, or if M ′ ≡ M and the reduction N −→ N ′ took
place, then

d(M ′) + d(N ′) < d(M) + d(N)

and so, by the IH, P ≡M ′N ′ is strongly normalizing.

Otherwise, we have M ′ ≡ λx:A.M ′′ and N ′ ≡ N . The assumption applies,
and M ′N is strongly normalizing.

(b) Similar to (P3)(a).
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(P4) All cases are very similar; we show (c)(ii), namely the case for K4.

If box M −→ P , then P ≡ box N for some N , and M −→ N . Hence
d(box M) ≤ d(M). But the last one is, by Theorem 16, equal to d(M⊥), which
is finite as M⊥ is strongly normalizing.

(P5)

(a) First, we note that by substituting x for N , the premise implies that M is
strongly normalizing, and thus that both d(M) and d(N) are finite.

We now proceed by induction on d(M) + d(N). If (λx:A. M)N −→ P ,
then there are three possibilities:

– P ≡ (λx:A. M ′)N and M −→M ′. Then

d(M ′) + d(N) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.

– P ≡ (λx:A. M)N ′ and N −→ N ′. Then

d(M) + d(N ′) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.

– P ≡M [N/x]. Then, by assumption, P is strongly normalizing.

In all cases, if (λx:A. M)N −→ P , then P is strongly normalizing. We
conclude that the original term itself is strongly normalizing.

(b) Similar to (a).

(c)

(i) First, we note that by substituting u for Q, the premise implies that N
is strongly normalizing, and thus that both d(M) and d(N) are finite.
We now proceed by induction on d(M)+d(N). If let box u⇐M in N −→
P , then there are three possibilities:

– P ≡ let box u⇐M ′ in N and M −→M ′. Then

d(M ′) + d(N) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.

– Likewise for N .
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– M ≡ box Q and P ≡ N [Q/u]. Then, by assumption, P is strongly
normalizing.

In all cases, if let box u⇐M in N −→ P , then P is strongly normaliz-
ing. We conclude that the original term itself is strongly normalizing.

(ii) Similar to (i).

5.4 Subformula Property

The notion of reduction we have studied in this chapter is computationally interesting,
but is logically weak, in the sense that it does not satisfy the Subformula Property.

The gist of the subformula property is that, in a ‘normal’ proof of formula A from
assumptions Γ (i.e. a proof that has no detours), the only formulas involved should be
either (a) subexpressions of the conclusion A, or (b) subexpressions of some premise
in Γ. This is almost sufficient to say that the proof has a very specific structure:
it proceeds by eliminating logical symbols of assumptions in Γ, and then uses the
results to ‘build up‘ a proof of A using only introduction rules. See Prawitz (1965)
and Girard et al. (1989) for a fuller discussion of these points.

Let us return to our systems: they do not satisfy the subformula property because
of the elimination rule:

∆ ; Γ `M : �A ∆, u:A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Notice that the conclusion C is given to us by the minor premise ∆, u:A ; Γ ` N : C,
and it is structurally unrelated to �A, the major premise that is being eliminated: in
Girard’s terminology, it is parasitic. This is so because the elimination rule is secretly
a kind of cut rule, or a rule in the style of Schroeder-Heister (1984).

It is not so easy at first to see where the actual trouble with this kind of rule is;
the point is that the let box u⇐ (−) in (−) construct may ‘hide redexes’ that should
be reduced. Once we introduce the extra reductions that are needed and prove the
subformula property this will become quite clear. But—in the meantime—let us
consider three examples.

Suppose that ∆, u:A ; Γ ` 〈N1, N2〉 : A1 × A2, and that ∆ ; Γ `M : �A. We may
use (�E) to obtain

∆ ; Γ ` let box u⇐M in 〈N1, N2〉 : A1 × A2
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This is indeed—and should be!—a normal form. But what if we just want to prove
A1? We may apply the elimination rule:

∆ ; Γ ` π1 (let box u⇐M in 〈N1, N2〉) : A1

Now, this is a proof of A1, but it surreptitiously contains a proof N2 of A2 as well,
which is entirely unrelated to A1 (neither needs to be a subexpression of the other).
But, according to our notion of reduction, it is normal! The problem is that the
let box u ⇐ (−) in (−) obstructs the meeting of the destructor π1(−) with the con-
structor 〈N1, N2〉. The solution is to allow a commuting conversion that allows the
two to meet, by ‘pulling the let construct outside:’

π1 (let box u⇐M in 〈N1, N2〉) −→ let box u⇐M in π1(〈N1, N2〉)

A similar situation occurs when ∆, u:A ; Γ ` λx:A.P : A→ B: we can form

∆ ; Γ ` let box u⇐M in λx:A.P : A→ B

which is a perfectly reasonable normal form, but if ∆ ; Γ ` Q : A then

∆ ; Γ ` (let box u⇐M in λx:A.P )Q : B

is not: we should be able to reduce

(let box u⇐M in λx:A.P )Q −→ let box u⇐M in (λx:A.P )Q

Finally, there is third, less visible case of this phenomenon. If we understand (�E)

to be a ‘bad’ elimination, we have considered the cases of ‘good’ elimination (πi(−),
application) following ‘bad’ elimination. The final case is that of ‘bad’ elimination
following another ‘bad’ elimination. To give an example, let’s consider an elimination
after a box (−) introduction:

∆ ; Γ ` let box u⇐M in box N : �A

If we then have a term ∆, v:A ; Γ ` P : C, we can plug this in by eliminating the box:

∆ ; Γ ` let box v ⇐ (let box u⇐M in box N) in P : C

Now things are clear: the second let-construct is obstructing the meeting of the first
let-construct with the introduction form box N . We need to convert:

let box v ⇐ (let box u⇐M in box N) in P

−→ let box u⇐M in let box v ⇐ box N in P
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but we should take care to rename u so that it does not occur in P—as it would be
wrongly bound otherwise.

These examples actually cover all cases. We define −→ c ⊆ Λ × Λ to be the
compatible closure of −→ that includes the following clauses:

πi (let box u⇐M in N) −→ c let box u⇐M in πi(N)

(let box u⇐M in P )Q −→ c let box u⇐M in PQ

let box v ⇐ (let box u⇐M in N) in P −→ c let box u⇐M in let box v ⇐ N in P

We can now prove the requisite property for this reduction relation: one only
needs to take enough care to strengthen the induction hypothesis sufficiently.

Theorem 20 (Subformula Property). Let ∆ ; Γ ` M : A, and suppose M is a
(−→ c)-normal form. Then,

1. Every type occuring in the derivation of ∆ ; Γ `M : A is either a subexpression
of the type A, or a subexpression of a type in ∆ or Γ.

2. If M is an elimination construct that is not of the form let box u ⇐ P in Q—
i.e. if it is a projection πi(N) or an application PQ—then it entirely consists
of a sequence of eliminations: that is, there is a sequence of types,

A0, . . . , An

such that

• A0 occurs in either ∆ or Γ,

• An is A, and

• Ai is the major premise of an elimination whose conclusion is Ai+1 for
i = 0, . . . , n. In particular, An is a subexpression of A0.

This is called a principal branch.

Proof. By induction on the derivation of ∆ ; Γ `M : A.

Case(x). Then ∆ ; Γ ` x : A and hence (x : A) ∈ Γ. This is the complete
derivation, and satisfies both desiderata.

Case(u). Then ∆ ; Γ ` u : A and hence (u : A) ∈ ∆. This is the complete
derivation, and satisfies both desiderata.
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Case(λx:A. M). Then the immediate premise is of the form ∆;Γ, x:A `M : B.
By the IH, all types that occur in that are either (a) subexpressions of types
in ∆ or Γ, (b) subexpressions of A, or (c) subexpressions of B. Thus any of
the types occuring in the derivation of the premise are indeed subexpressions of
either ∆, Γ, or A → B. Let us now look at the complete derivation. The only
new type that occurs in it is A → B, and that is trivially a subexpression of
itself.

Case(〈M,N〉). Similar.

Case(box M). Similar.

Case(MN). Then the major premise is ∆ ; Γ ` M : B → A and the minor
premise is ∆ ; Γ ` N : B for some type B.

Let us look at the term M . It cannot be a lambda-abstraction, for that would
make MN a redex. It also cannot be any other introduction rule, for they
introduce types of a different shape (e.g. A× B or �A). Hence, it must be an
elimination. Of the eliminations, it cannot be a let-expression, for our newly
introduced commuting conversion would make that a redex.

It follows that M is a ‘good’ elimination, either πi(−) or PQ. We can thus
apply (2) from the inductive hypothesis to conclude that there is a principal
branch beginning with an assumption in ∆ or Γ, and ending with B → A. We
can extend that principal branch to a principal branch for M , ending with A.
This proves (2), and furthermore implies that B → A is a subexpression of some
premise in either ∆ or Γ.

Over to (1): applying the IH to the major premise, we know that every type
that occurs in the derivation of ∆ ; Γ `M : B → A is either a subexpression of
a type in ∆ or Γ, or a subexpression of B → A. But we have already deduced
that B → A is a subexpression of some premise in either ∆ or Γ, so that all
types occuring in the derivation of the major premise satisfy the desideratum.

Applying the IH to the minor premise, every type that occurs in the derivation
of ∆ ; Γ ` N : B is either a subexpression of some type in ∆ or Γ, or a
subexpression of B. But B is a subexpression of B → A, which in turn is a
subexpression of a premise in one of the contexts. Hence all types occurring in
that branch also occur in either ∆ or Γ. This concludes the proof of this case,
for we have examined all types appearing in the derivation.
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Case(πi(M)). Similar.

Case(let box u ⇐ M in N). The major premise is then ∆ ; Γ ` M : �B and
the minor premise is ∆, u:B ; Γ ` N : A for some B. (2) does not apply to
let-constructs, so we only need to show (1).

Consider the term M . It cannot be a box (−), for that would make the entire
term a redex. It also cannot be any other introductory form, because they in-
troduce types of a different shape. It therefore must be an elimination form; but
not another let-construct, for that would be a redex too, due to our commuting
conversion. Hence, it must be a ‘good’ elimination, either of the form πi(M

′)

or of the form PQ. It follows that (2) of the IH applies: there is a principal
branch beginning with a premise and ending with �B. In particular, �B is a
subexpression of some type in ∆ or Γ.

By the IH, any type that occurs in the derivation of the major premise is either
a subexpression of a type in ∆ or Γ, or a subexpression of �B. But �B is
a subexpression of some type in one of those two contexts, so every type that
occurs in the derivation of the major premise is actually a subexpression of a
type in ∆ or Γ.

As for the minor premise, any type that occurs in it is either a subexpression of a
type in ∆ or Γ, or a subexpression of the types B or A. But B is a subexpression
of �B, which by our previous reasoning is in turn a subexpression of some type
in either ∆ or Γ. Thus all types occuring in it are either subexpressions of some
type in ∆ or Γ, or subexpressions of A. This concludes the proof of this case.

We have thus established the notion of reduction −→ c, which eliminates any
structurally irrelevant occurences from a proof of the formula. Of course, one should
extend the preceding analysis of −→ to this notion, but we think that this may be
harder than it sounds. A full analysis would follow the lines of the one in Ohta and
Hasegawa (2006), whilst keeping in mind that we are not trying to decide an equality
like in op. cit., but that we are merely eliminating parasitic formulae.
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Chapter 6

Candidates of Reducibility

In this chapter we adapt the method of candidats de reducibilité to our modal λ-
calculi. The method of candidats originated in Girard’s proof of strong normalization
for System F (Girard, 1972).

Our variant of “candidats” is a combination of two versions. The main structure
of the proof is due to by Koletsos (1985), as presented in simplified form by Gallier
(1995). However, the Koletsos-Gallier presentation does not carry typing information
in the proof, whereas in our calculi typing is vital. Thus, we enhance their method,
insofar as our can candidates consist of typing judgments ∆ ; Γ ` M : A rather than
simply terms M : A. Ideas on how this is done were drawn from another chapter by
Gallier (1990), which also surveys multiple variants of the candidats method.

The overall structure of the proof is the following. Suppose we have a family of
nonempty sets of typing judgments,

P = {PA}A

indexed by the type A they assign to the term they carry. We will state six properties,
P0–P5, that such a family should satisfy. In case it does indeed satisfy them, we show
that PA contains all judgments ∆ ; Γ `M : A with type A.

In §5.3 we verified that the family {PA}A where PA contains all judgments ∆ ; Γ `
M : A for which the term M is strong normalizing indeed satisfies P0–P5, and it thus
followed that all terms strongly normalizing.

We now give a brief summary of the proof. To begin, we will state the first four
properties, namely P0–P4. We also define what it means for a set C of derivable
judgments to be a candidate. Then, we define a subset JAK of PA, for each type A.
We call judgments in JAK reducible. It so happens that JAK is a candidate. Finally,
we introduce two further properties, P4 and P5. If these hold of PA, then we show
that JAK contains all derivable judgments.
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But before we begin, we need to differentiate between introduction and elimination
forms. The first we call I-terms, and the latter simple:

Definition 7.

1. A term is a I-term just if it is an introduction form, i.e. of the form

λx:A. M, 〈M,N〉, box M, fix z in box M (for GL only)

2. A term is a simple term just if it is a variable or an elimination form, i.e. of the
form

x, MN, πi(M), let box u⇐M in N

3. A stubborn term is a simple term that is either a normal form, or a term that
does not reduce to a I-term.

6.1 Candidates: the first four properties

We now define the first four properties that we shall consider. The first one is our
addition to Gallier (1995), and solely refers to typing: in particular, it requires that
weakening, modal weakening, and modal dereliction are admissible rules in the family
P . The second and third require that all variables be in P , and that P be closed
under reduction respectively. Finally, the fourth is a funny closure condition: if a term
reduces to a I-term, then eliminating this introduction by something of appropriate
type present in P again yields something in P .

Definition 8 (Properties P0-P3). We define the following properties pertaining to
the family P .

(P0) (a) ∆ ; Γ `M ∈ PA and Γ v Γ′ imply ∆ ; Γ′ `M ∈ PA

(b) ∆ ; Γ `M ∈ PA and ∆ v ∆′ imply ∆′ ; Γ `M ∈ PA

(c) (for T and S4 only) ∆ ; Γ,Γ′ `M ∈ PA implies ∆,Γ ; Γ′ `M ∈ PA

(P1) ∆ ; Γ ` x ∈ PA for all variables x.

(P2) M ∈ PA and M −→ N imply N ∈ PA.

(P3) For simple terms M ,

(a) If
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– ∆ ; Γ `M ∈ PA→B,

– ∆ ; Γ ` N ∈ PA, and

– whenever M −→∗ λx:A.M ′ then ∆ ; Γ ` (λx:A.M ′)N ∈ PB

then this implies ∆ ; Γ `MN ∈ PB.

(b) If

– ∆ ; Γ `M ∈ PA×B, and

– whenever M −→∗ 〈M1,M2〉 then ∆ ; Γ ` π1(〈M1,M2〉) ∈ PA and
∆ ; Γ ` π2(〈M1,M2〉) ∈ PB,

then this implies that ∆ ; Γ ` π1(M) ∈ PA and ∆ ; Γ ` π2(M) ∈ PB.

We now define what it means to be a candidate C ⊆ PA. The gist is this: a
candidate is closed under our useful admissible rules; it is closed under reduction;
and, a term is necessarily in the candidate if all the I-terms it reduces to are in the
candidate as well.

Definition 9 (P-candidate). A set C of derivable judgments of type A is a P-
candidate just if

(R0) (a) ∆ ; Γ `M ∈ C and Γ v Γ′ imply ∆ ; Γ′ `M ∈ C.

(b) ∆ ; Γ `M ∈ C and ∆ v ∆′ imply ∆′ ; Γ `M ∈ C.

(c) (for T and S4 only) ∆ ; Γ,Γ′ `M ∈ C implies ∆,Γ ; Γ′ `M ∈ C

(R1) C ⊆ PA.

(R2) ∆ ; Γ `M ∈ C and M −→ N imply ∆ ; Γ ` N ∈ C.

(R3) If ∆;Γ `M ∈ PA is simple, and whenever M −→∗ N and N is a I-term implies
that ∆ ; Γ ` N ∈ C then it follows that ∆ ; Γ `M ∈ C.

The definition implies that all variables are in a candidate:

Lemma 5. For any P-candidate C, ∆ ; Γ ` x ∈ C.

Proof. By (P1), we have that ∆ ; Γ ` x ∈ PA, and by definition x is simple, and
a normal form, so it cannot ever reduce to a I-term. All the premises of (R3) are
satisfied, so ∆ ; Γ ` x ∈ C.
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We now define the set JAK of reducible judgments for each type A. This definition
has a flavour that is familiar to those acquainted with logical relations, or logical
predicates in this case. J�AK is defined differently for each system, and so is JA→ BK,
in order to ensure admissibility of the dereliction rule when needed.

Definition 10 (Reducible judgments). We define for each type A a set of derivable
judgments JAK ⊆ PA by induction on A.

JpiK
def
= Ppi

JA×BK def
= {∆ ; Γ `M ∈ PA×B | ∆ ; Γ ` π1(M) ∈ JAK ∧ ∆ ; Γ ` π2(M) ∈ JBK }

JA→ BK def
=



{ ∆ ; Γ `M ∈ PA→B |
∀ splittings Γ ≡ Γ1,Γ2.

∀∆′ w ∆,Γ1. ∀Γ′ w Γ2.

∀∆′ ; Γ′ ` N ∈ JAK . ∆′ ; Γ′ `MN ∈ JBK}

for T, S4

{ ∆ ; Γ `M ∈ PA→B |
∀∆′ w ∆. ∀Γ′ w Γ.

∀∆′ ; Γ′ ` N ∈ JAK . ∆′ ; Γ′ `MN ∈ JBK}
otherwise

J�AK def
=



{∆ ; Γ `M ∈ P�A |M −→∗ box Q =⇒ · ; ∆ ` Q ∈ JAK } for K, T{
∆ ; Γ `M ∈ P�A

∣∣M −→∗ box Q =⇒ ∆ ; ∆⊥ ` Q⊥ ∈ JAK
}

for K4
{∆ ; Γ `M ∈ P�A |M −→∗ box Q =⇒ ∆ ; · ` Q ∈ JAK } for S4
{ ∆ ; Γ `M ∈ P�A |
M −→∗ fix z in box Q =⇒ ∆ ; ∆⊥, z⊥ : A ` Q⊥ ∈ JAK}

for GL

We can now prove that JAK is a candidate. We will need a slightly stronger induction
hypothesis in order to complete the proof.

Theorem 21. If P = {PA} satisfies properties P0-P3, then

1. For any A, JAK is a P-candidate.

2. For any A, JAK contains all the stubborn terms in PA.

Proof. By induction on types.

1. Case(pi). Then JAK = Ppi , so it trivally contains all stubborn terms in Ppi ,
hence (2). To verify (1), we need to show properties R0–R3. R0 is exactly P0.
R1 is trivially satisified. R2 is exactly P2. R3 also trivially holds as JAK contains
all terms in Ppi .
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2. Case(A×B). For (1), we verify R0-R3.

(R0) For (a): let ∆;Γ `M ∈ JA×BK and Γ v Γ′. Then ∆;Γ ` π1(M) ∈ JAK by
the definition of JA×BK, and—by the IH—we have ∆;Γ′ ` π1(M) ∈ JAK,
and similarly for B, which yields the result. The reasoning is similar for
(b) and (c).

(R1) Trivially JA×BK ⊆ PA×B.

(R2) Let ∆ ; Γ ` M ∈ JA×BK, and suppose M −→ N . By (P2), we have
∆ ; Γ ` N ∈ PA×B. It remains to show ∆ ; Γ ` π1(N) ∈ JAK and ∆ ; Γ `
π2(N) ∈ JBK. But as ∆ ; Γ `M ∈ JA×BK, we have ∆ ; Γ ` π1(M) ∈ JAK.
Thus, as π1(M) −→ π1(N), we use (R2) from the IH to obtain ∆ ; Γ `
π1(N) ∈ JAK. Similarly for π2(N).

(R3) Suppose that M ∈ PA×B is a simple term, and whenever M −→∗ 〈P,Q〉,
then 〈P,Q〉 ∈ JA×BK. We want to show that π1(M) ∈ JAK and π2(M) ∈
JBK.

First, we show they are in PA and PB respectively, and we do this by
invoking (P3)(b). Suppose then that M −→∗ 〈P,Q〉 for some P and Q.
By assumption, we have 〈P,Q〉 ∈ JA×BK, and hence—by definition—
π1(〈P,Q〉) ∈ JAK ⊆ PA and π2(〈P,Q〉) ∈ JBK ⊆ PB. So, as M is simple,
we obtain by (P3)(b) that π1(M) ∈ PA and π2(M) ∈ PB.

There are now two cases:

Case(M stubborn). Then M never reduces to a I-term. It follows
that π1(M) ∈ PA and π2(M) ∈ PB are also stubborn, as M never
reduces to a pair so that the outermost projections become a redex.
By (2) of the IH, π1(M) ∈ JAK and π2(M) ∈ JBK as each contains all
stubborn terms in PA and PB respectively.

Case(M not stubborn). We only show this for A, the reasoning for
B being similar.

Case(A ≡ pi). Then have the result, as JAK = PA.

Case(A 6≡ pi). We use (R3) from the IH: it suffices to show that
π1(M) −→∗ U for some I-term U implies U ∈ JAK.
If π1(M) is stubborn, then the desideratum holds vacuously.
Suppose otherwise, i.e. that π1(M) −→∗ U for some I-term U . As
U is a I-term, the reduction π1(M) −→∗ U must have been of the
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form
π1(M) −→∗ π1(〈U ′, V ′〉) −→ U ′ −→∗ U

with M −→∗ 〈U ′, V ′〉: otherwise the outer π1(−) would have
persisted. But M is simple and M −→∗ 〈U ′, V ′〉, so—by our
assumption—〈U ′, V ′〉 ∈ JA×BK, hence π1(〈U ′, V ′〉) ∈ JAK by
definition. By multiple uses of (R2) of the IH, this yields that
U ∈ JAK.

For (2): if M ∈ PA×B is stubborn, we argue as above: M is simple, and it
never reduces to a I-term, so by (P3)(b) we have π1(M) ∈ PA and π2(M) ∈ PB
respectively. These terms are in turn stubborn, so by the IH they are in JAK
and JBK respectively, hence M ∈ JA×BK by definition.

3. Case(A→ B). For (1):

(R0) We only show (a) for the ‘otherwise’ case, the T and S4 case being very
similar. Let ∆ ; Γ ` M ∈ JA→ BK, and Γ v Γ′. We need to show
that, given Γ′′ w Γ′, ∆′′ w ∆ and any ∆′′ ; Γ′′ ` N ∈ JAK we have
∆′′ ; Γ′′ `MN ∈ JBK. But, as Γ v Γ′ and v is transitive, this follows from
the definition of JA→ BK. The reasoning is similar for (b).

For (c): let ∆ ; Γ,Γ′ ` M ∈ JA→ BK. We need to show that for all
splittings Γ′ ≡ Γ′a,Γ

′
b and ∆′ w ∆,Γ′a and Γ′ w Γ′b we have that ∆′ ; Γ′ `

N ∈ JAK implies that ∆′ ; Γ′ ` MN ∈ JBK. Pick Γ1
def
= Γ,Γ′a and Γ2

def
= Γ′b;

the definition of JA→ BK then ensures that, again by transitivity of v.

(R1) Trivially JA→ BK ⊆ PA×B.

(R2) Let ∆ ; Γ ` M ∈ JA→ BK and suppose M −→ N . By (P2) we have
N ∈ PA→B. It remains to show that, for all P ∈ JAK, NP ∈ JBK. But we
have—by definition—that MP ∈ JBK, and as MP −→ NP , we have by
(R2) of the IH that NP ∈ JBK.

(R3) For the sake of clarity we omit the contexts in this case, for they are just
annotations to the essence of the argument.

Suppose that M ∈ PA→B is a simple term, and whenever M −→∗ λx:A. P

then λx:A. P ∈ JA→ BK. That is, for anyQ ∈ JAK, we have (λx:A. P )Q ∈
JBK. We need to show that, for any N ∈ JAK we have MN ∈ JBK.
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First, we show that for any N ∈ JAK we have MN ∈ PB. We know by the
assumption that wheneverM −→∗ λx:A. P then (λx:A. P )N ∈ JBK ⊆ PB.
By (P3)(a), it follows that MN ∈ PB.
There are two cases.

Case(M stubborn). Then MN ∈ PB is also stubborn, as no top-
level redexes can ever be created. It follows by the IH for B that
MN ∈ JBK.

Case(M not stubborn). We distinguish on whether B is a base type
or not.

Case(B ≡ pi). Then MN ∈ PB = JBK.

Case(B 6≡ pi). The term MN ∈ PB is simple. Thus, it suffices—
by (R3) of the IH for B—to show the following: if MN −→∗ Q
with Q a I-term, then Q ∈ JBK.
If MN is stubborn, then it never reduces to a I-term, so the
desideratum holds vacuously.
If MN is not stubborn, we have that MN −→∗ U for some I-term
U. As U is a I-term, that reduction must be of the form

MN −→∗ (λx:A. P )N ′ −→ P [N ′/x] −→∗ U

withM −→∗ λx:A.P and N −→∗ N ′: otherwise the outer applica-
tion would have persisted. But M is simple and M −→∗ λx:A. P ,
so by the assumption λx:A. P ∈ JA→ BK. As N −→∗ N ′, re-
peated applications of the (R2) of the IH yield N ′ ∈ JBK. Thus,
(λx:A. P )N ′ ∈ JBK, and again by repeated applications of (R2) of
the IH, U ∈ JBK.

For (2): ifM ∈ PA→B is stubborn, we argue as above: M is simple, and it never
reduces to a I-term. Take any N ∈ JAK ⊆ PA. By (P3)(a)MN ∈ PB. ThisMN

is in turn stubborn—as M never reduces to a λ-abstraction and the outermost
application persists—so, by the IH, MN ∈ JBK. Hence M ∈ JA→ BK.

4. Case(�A). For (1):

(R0) (a) trivially holds, for none of the judgments for Q in the definition of
J�AK depend on the context Γ.

(b) and (c) follow from the assumption ∆ ; Γ ` M : �A and—depending
on the logic—the statements (a), (b), or both, of (R0) of the IH for A.
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(R1) Trivially J�AK ⊆ P�A.

(R2) We only show the case for K, the others being entirely analogous.

Let ∆ ; Γ ` M ∈ J�AK and suppose M −→ N . By (P2) we have ∆ ;

Γ ` N ∈ P�A. It remains to show that, whenever N −→∗ box Q, then
· ; ∆ ` Q ∈ JAK. But when that sequence of reductions happens, we have

M −→ N −→∗ box Q

thus, by the definition of J�AK, we have that · ; ∆ ` Q ∈ JAK.

(R3) We only show the case for S4, all the others being similar.

Suppose that ∆ ; Γ ` M ∈ P�A is a simple term, and whenever M −→∗

box Q then that term is in J�AK: this is to say that whenever box Q −→∗

box Q′, then ∆ ; · ` Q′ ∈ JAK. We need to show that, if M −→∗ box Q,
then ∆; · ` Q ∈ JAK. But, by reflexivity, box Q −→∗ box Q, so this already
follows by our assumption.

For (2): if M ∈ P�A is stubborn, then it never reduces to a I-term of shape
box Q, so it is—by definition—in J�AK. Likewise for GL.

6.2 Closure under formation: the latter two proper-
ties

We now introduce two further properties. Property (P4) is essentially closure of
P under introduction rules. Property (P5) ensures that, if a term is in P is after
‘eliminating a detour,’ then it is also in P before the detour is eliminated.

Definition 11 (Properties P4-P5).

(P4) (a) If ∆ ; Γ, x:A `M ∈ PB then ∆ ; Γ ` λx:A. M ∈ PA→B.

(b) ∆ ; Γ `M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` 〈M,N〉 ∈ PA×B.

(c)

i. (for K and T) · ; ∆ `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A
ii. (for K4) ∆ ; ∆⊥ `M⊥ ∈ PA implies ∆ ; Γ ` box M ∈ P�A
iii. (for GL) ∆ ; ∆⊥, z⊥ : �A ` M⊥ ∈ PA implies ∆ ; Γ ` fix z in box M ∈

P�A
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iv. (for S4) ∆ ; · `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A

(P5) (a) If ∆′ w ∆ and Γ′ w Γ satisfy ∆′ ; Γ′ ` N ∈ PA and ∆′ ; Γ′ `M [N/x] ∈ PB,
then ∆′ ; Γ′ ` (λx:A. M)N ∈ PB.

(b) ∆ ; Γ ` M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` π1(〈M,N〉) ∈ PA and
∆ ; Γ ` π2(〈M,N〉) ∈ PB.

(c) i. (for non-GL) If we have ∆ ; Γ ` M ∈ P�A and ∆, u:A ; Γ ` N ∈ PC ,
and whenever M −→∗ box Q then ∆ ; Γ ` N [Q/u] ∈ PC , then we have
that ∆ ; Γ ` let box u⇐M in N ∈ PC .

ii. (for GL only) If we have ∆;Γ `M ∈ P�A and ∆, u:A;Γ ` N ∈ PC , and
wheneverM −→∗ fix z in box Q then ∆;Γ ` N [Q[fix z in box Q/z]/u] ∈
PC , then we have that ∆ ; Γ ` let box u⇐M in N ∈ PC .

The next theorem shows that properties (P4) and (P5) carry over to the candidates
of reducible judgments JAK.

Theorem 22. If P = {PA} satisfies properties (P1)-(P5), then

1. If whenever Γ′ w Γ, ∆′ w ∆ and ∆′ ; Γ′ ` N ∈ JAK we have ∆′ ; Γ′ `M [N/x] ∈
JBK, then

∆ ; Γ ` λx:A. M ∈ JA→ BK

2. If ∆ ; Γ `M ∈ JAK and ∆ ; Γ ` N ∈ JBK then

∆ ; Γ ` 〈M,N〉 ∈ JA×BK

3. (a) (for K and T) If ∆ ; Γ ` M ∈ J�AK, and whenever ∆′ w ∆ and · ; ∆′ `
Q ∈ JAK then we have ∆′ ; Γ ` N [Q/u] ∈ JCK then

∆ ; Γ ` let box u⇐M in N ∈ JCK

(b) (for K4 only) If ∆ ; Γ `M ∈ J�AK, and whenever ∆′ w ∆ and ∆′ ; ∆′⊥ `
Q⊥ ∈ JAK then we have ∆′ ; Γ ` N [Q/u] ∈ JCK, then

∆ ; Γ ` let box u⇐M in N ∈ JCK

(c) (for GL only) If ∆;Γ `M ∈ J�AK, and whenever ∆′ w ∆ and ∆′ ;∆′⊥, z⊥ :

�A ` Q⊥ ∈ JAK then ∆′ ; Γ ` N [Q[fix z in box Q/z]/u] ∈ JCK, then

∆ ; Γ ` let box u⇐M in N ∈ JCK
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(d) (for S4 only) If ∆ ; Γ `M ∈ J�AK, and whenever ∆′ w ∆ and ∆′ ; · ` Q ∈
JAK then we have ∆′ ; Γ ` N [Q/u] ∈ JCK, then

∆ ; Γ ` let box u⇐M in N ∈ JCK

Proof.

1. First, we show that ∆ ; Γ ` λx:A. M ∈ PA→B. By Lemma 5 and Theorem 21,
it is the case that ∆ ; Γ, x:A ` x ∈ JAK. Hence, by taking Γ′

def
= Γ, x:A and

∆′
def
= ∆ in the assumption, we have ∆ ; Γ, x:A `M [x/x] ∈ JBK ⊆ PB. Thus, as

M [x/x] ≡M , we have by (P4)(a) that ∆ ; Γ ` λx:A. M ∈ PA→B.

It remains to show that, for ∆′ w ∆, Γ′ w Γ and ∆′ ; Γ′ ` N ∈ JAK, we have
∆′ ; Γ′ ` (λx:A. M)N ∈ JBK. First we need to show that (λx:A. M)N ∈ PB.
But, by the assumption, M [N/x] ∈ JBK ⊆ PB. By invoking (P5)(a) we have
that (λx:A. M)N ∈ PB. There are now two cases.

Case(B ≡ pi). Then PB = JBK and the result follows.

Case(B 6≡ pi). We have that (λx:A. M)N is simple, so we use (R3): it
suffices to show that whenever (λx:A. M)N −→∗ Q and Q is a I-term,
then Q ∈ JBK.

If (λx:A. M)N is stubborn, then the desideratum is trivial.

Otherwise, if (λx:A. M)N −→∗ Q where Q is a I-term, then the reduction
must be of the form

(λx:A. M)N −→∗ (λx:A. M ′)N ′ −→M ′[N ′/x] −→∗ Q

where M −→∗ M ′ and N −→∗ N ′: otherwise the outermost application
would persist. But, by the assumption, M [N/x] ∈ JBK, and

M [N/x] −→∗ M ′[N ′/x] −→∗ Q

so, by applying (R2) repeatedly, Q ∈ JBK.

2. First, we show that 〈M,N〉 ∈ PA×B. We have M ∈ JAK ⊆ PA and N ∈ JBK ⊆
PB, so what we want follows simply by (P4)(b).

It remains to show that π1(〈M,N〉) ∈ JAK and π2(〈M,N〉) ∈ JBK. That each
is already in PA and PB respectively follows by (P5)(2) and the fact M and N
are already in PA and PB respectively.

There are now two cases: we show each for A, the one for B being analogous.
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Case(A ≡ pi). Then π1(〈M,N〉) ∈ PA = JAK.

Case(A 6≡ pi). Then π1(〈M,N〉) is simple, so we use (R3): it suffices to
show that whenever π1〈M,N〉 −→∗ Q and Q is a I-term, then Q ∈ JAK.

If π1(〈M,N〉) is stubborn, then the desideratum is trivial.

Otherwise, if π1(〈M,N〉) −→∗ Q where Q is a I-term, then the reduction
must be of the form

π1(〈M,N〉) −→∗ π1(〈M ′, N ′〉) −→M ′ −→∗ Q

where M −→∗ M ′ and N −→∗ N ′: otherwise, the outermost projection
construct would persist. But, by assumption, M ∈ JAK, and

M −→∗ M ′ −→∗ Q

so by multiple applications of (R2) we get that Q ∈ JAK.

3. We only show the case for K and T, with the other cases being analogous (e.g.
using (P5)(c)(ii) for GL).

First, we show that let box u ⇐ M in N ∈ PC , and we invoke (P5)(c)(i) to do
so. It suffices to show that ∆ ; Γ ` M ∈ P�A, that ∆, u:A ; Γ ` N ∈ PC ,
and whenever M −→∗ box Q then ∆ ; Γ ` N [Q/u] ∈ PC . The first of these is
implied by the assumption that ∆ ; Γ ` M ∈ JAK ⊆ PA. For the second, we
infer that—by Lemma 5 and Theorem 21—we have that · ; ∆, u:A ` u ∈ JAK.
Hence, as ∆ v ∆, u:A, we have by the assumption that

∆, u:A ; Γ ` N ≡ N [u/u] ∈ JCK

The final desideratum also follows: if M −→∗ box Q then, by the definition
of J�AK, we have that · ; ∆ ` Q ∈ JAK and hence—by the assumption—that
∆ ; Γ ` N [Q/u] ∈ JCK ⊆ PC .

For the rest, there are two cases.

Case(M is stubborn). Then so is let box u⇐M in N , as the let construct
persists. As it is a simple term, it never reduces to a I-term, and it is in
PC , it is also in JCK, simply by invoking (R3).

Case(M is not stubborn). We distinguish again on whether C is a base
type or not.

Case(C ≡ pi). Then let box u⇐M in N ∈ PC = JCK.
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Case(C 6≡ pi). Then let box u⇐M in N is simple, so we use (R3): it
suffices to show that whenever let box u⇐M in N −→∗ Q and Q is a
I-term, then Q ∈ JCK.
If let box u⇐M in N is stubborn, then the desideratum is trivial.
Otherwise, if let box u ⇐ M in N −→∗ Q where Q is a I-term, then
the reduction must be of the form

let box u⇐M in N

−→∗ let box u⇐ box U in N ′

−→ N ′[U/u]

−→∗ Q

where M −→∗ box U and N −→∗ N ′: otherwise the let construct
would persist. But, by assumption, ∆ ; Γ `M ∈ J�AK, so by multiple
applications of (R2) we infer that ∆ ; Γ ` box U ∈ J�AK and hence
that ·;∆ ` U ∈ JAK. By the assumption, we get ∆;Γ ` N [U/u] ∈ JCK.
But

N [U/u] −→∗ N ′[U/u] −→∗ Q

so, by repeated applications of (R2), Q ∈ JCK.

6.3 The main theorem

Definition 12. A substitution is a finite function σ : V ⇀ Λ from the set of all
variables V to the set of all possible terms Λ.

Definition 13. A substitution σ : V ⇀ Λ is type-preserving from ∆′ ; Γ′ to ∆ ; Γ,
written

∆′ ; Γ′
σ

=⇒DL ∆ ; Γ

just if

1. dom(σ) ⊆ Vars (∆) ∪Vars (Γ),

2. (x : C) ∈ Γ implies ∆′ ; Γ′ ` σ(x) : C, and

3. either

– L ∈ {K,T} and (u : C) ∈ ∆ implies · ; ∆′ ` σ(u) ∈ C, or
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– L = K4 and (u : C) ∈ ∆ implies ∆′ ; ∆′⊥ ` (σ(u))⊥ ∈ C, or

– L = GL and there exists a variable z such that (u : C) ∈ ∆ implies
∆′ ; ∆′⊥, z⊥ : �C ` (σ(u))⊥ ∈ C, or

– L = S4 and (u : C) ∈ ∆ implies ∆′ ; · ` σ(u) ∈ C.

We write if σ : V ⇀ Λ is a substitution, we write σ[x 7→ N ] : V ⇀ Λ to mean the
substitution defined by

σ(y)
def
=

{
σ(y) if y 6≡ x

N if y ≡ x

One may weaken substitutions freely:

Lemma 6 (Substitution Weakening). If ∆′ ; Γ′ ` σ : ∆ ; Γ and ∆′ v ∆′′ and Γ′ v Γ′

then ∆′′ ; Γ′′ ` σ : ∆ ; Γ.

Proof. Use weakening for individual terms.

It is easy to show the following convenient technical result:

Lemma 7 (Modal Drop). Given a type-preserving substitution σ : V ⇀ Λ, such that
∆′ ; Γ′

σ
=⇒DL ∆ ; Γ we also have that

– If L ∈ {K,T}, then · ; ∆′
σ

=⇒DK · ; ∆

– If L = K4, then ∆′ ; ∆′⊥
σ

=⇒DK4 ∆ ; ∆⊥

– If L = GL, then, for some variable z we have

∆′ ; ∆′⊥, z⊥ : �A
σ

=⇒DGL ∆ ; ∆⊥, z⊥ : �A

– If L = S4, then ∆′ ; · σ
=⇒DS4 ∆ ; ·

Proof. Trivial.
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We extend the action of substitutions on terms, as follows:

σ(y)
def
=

{
σ(y) if y ∈ dom(σ)

y otherwise

σ(λx:A. M)
def
= λx:A. σ(M)

σ(MN)
def
= σ(M)σ(N)

σ(〈M,N〉) def
= 〈σ(M), σ(N)〉

σ(πi(M))
def
= πi(σ(M))

σ(box M)
def
= box σ(M)

σ(let box u⇐M in N)
def
= let box u⇐ σ(M) in σ(N)

σ(fix z in box M)
def
= fix z in box σ(M) (for GL only)

where we silently α-rename bound variables in λ-abstractions, let bindings, or fixpoint
terms, so as to avoid substituting for something bound, or having something free
become bound after a substitution.

Lemma 8. If ∆′ ; Γ′
σ

=⇒ ∆ ; Γ and ∆ ; Γ `M : C then ∆′ ; Γ′ ` σ(M) : C.

Proof. By induction on M . We only show some cases: for the others the IH suffices.

Case(x). Then (x : C) ∈ Γ, or—in the cases of T and S4—(x : C) ∈ ∆. If
(x : C) ∈ Γ then we have that ∆′ ; Γ′ ` σ(x) : C. Otherwise, say in the case of
T, we have that · ; ∆′ ` σ(x) : C, so we use modal dereliction (Theorem 12) to
conclude ∆′ ; · ` σ(x) : C, and then weakening to obtain the result. The case
of S4 is similar.

Case(λx:A. M). Then we have that ∆ ; Γ, x:A `M : B for some A and B such
that C ≡ A→ B. Define

σ′
def
= σ[x 7→ x]

so that, by weakening and definition, ∆′ ; Γ′, x:A
σ′

=⇒ ∆ ; Γ, x:A. By the IH, we
have

∆′ ; Γ′, x:A ` σ′(M) : B

But σ′(M) ≡ σ(M), so a single use of (→ I) yields the result.

Case(box M).
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– (for K and T)

Then · ; ∆ `M : A for some A such that C ≡ �A. We have that

· ; ∆′
σ

=⇒ · ; ∆

by Lemma 7; thus, applying the IH yields · ; ∆′ ` σ(M) : A. But as
σ(box M) ≡ box σ(M), a single use of (�IK) suffices.

– (others) Similar.

Case(fix z in box M). (for GL only) Similarly.

Case(let box u⇐M in N). Similar to the case for λ-abstraction.

Theorem 23 (Candidats). Let P = {PA} be a family satisfying properties (P1)–(P5).
If ∆ ; Γ `DL M : A, and ∆′ ; Γ′ ` σ : ∆ ; Γ is a substitution such that

(x : C) ∈ Γ =⇒ ∆′ ; Γ′ ` σ(x) ∈ JCK

and either

– L ∈ {K,T} and (u : C) ∈ ∆ implies · ; ∆′ ` σ(u) ∈ JCK, or

– L = K4 and (u : C) ∈ ∆ implies ∆′ ; ∆′⊥ ` (σ(u))⊥ ∈ JCK, or

– L = GL and there exists a variable z such that (u : C) ∈ ∆ implies ∆′ ; ∆′⊥, z⊥ :

�C ` (σ(u))⊥ ∈ JCK, or

– L = S4 and (u : C) ∈ ∆ implies ∆′ ; · ` σ(u) ∈ JCK

then
∆′ ; Γ′ ` σ(M) ∈ JAK

Proof. By induction on M .

Case(x).

Then (x : C) ∈ Γ, or—in the cases of T and S4—(x : C) ∈ ∆. In the case of
the former, the assumption implies that ∆′ ; Γ′ ` σ(x) ∈ JCK. In the case of the
latter, we conclude that · ; ∆′ ` σ(x) ∈ JCK. We use Theorem 21 and (R0)(c)
to conclude that ∆′ ; · ` σ(x) ∈ JCK, and then Theorem 21 again and (R0)(a)
to weaken this to ∆′ ; Γ′ ` σ(x) ∈ JCK.
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Case(λx:A. M). Then ∆ ; Γ, x:A `M : B for some B. We use Theorem 22(1):
it suffices to show that for ∆′′ w ∆′ and Γ′′ w Γ′, and for every ∆′′ ;Γ′′ ` N ∈ JAK
we have ∆′′ ; Γ′′ ` σ(M)[N/x] ∈ JBK, for then Theorem 22(1) yields

∆′ ; Γ′ ` λx:A. σ(M) ∈ JA→ BK

But then λx:A. σ(M) ≡ σ(λx:A. M), hence the result. To this end, let

σ′
def
= σ[x 7→ N ]

Then, by weakening both contexts in σ, we have that

∆′′ ; Γ′′
σ′

=⇒ ∆ ; Γ, x:A

and σ(M)[N/x] ≡ σ′(M). But σ′ satisfies the premises of the IH for M , hence

∆′′ ; Γ′′ ` σ′(M) ∈ JBK

which is the desideratum.

Case(MN). Then ∆ ; Γ ` M : A → B and ∆ ; Γ ` N : A for some A and
B. We use the IH twice to conclude that ∆′ ; Γ′ ` σ(M) ∈ JA→ BK and
∆′ ; Γ′ ` σ(N) ∈ JAK. By the definition of J−K, this yields that

∆′ ; Γ′ ` σ(MN) ≡ σ(M)σ(N) ∈ JBK

Case(〈M,N〉). Then ∆ ; Γ ` M ∈ A and ∆ ; Γ ` N ∈ B. We use Theorem
22(2): it suffices to show that ∆′ ; Γ′ ` σ(M) ∈ JAK and ∆′ ; Γ′ ` σ(N) ∈ JBK,
for then

∆′ ; Γ′ ` σ(〈M,N〉) ≡ 〈σ(M), σ(N)〉 ∈ JA×BK

But the two desiderata follow from the IH.

Case(π1(M)). Then ∆ ; Γ `M ∈ A×B for some A and B. We use the IH to
conclude that ∆′ ; Γ′ ` σ(M) ∈ JA×BK, and hence that

∆′ ; Γ′ ` σ(π1(M)) ≡ π1(σ(M)) ∈ JAK

which follows by the definition of JA×BK.

Case(π2(M)). Similar.
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Case(box M). We only show the case for K and T, the others being similar.

Then · ;∆ `M : A for some A. By Lemma 7, we have that · ;∆′ σ
=⇒ · ;∆. Then,

by the IH, we have that · ; ∆′ ` σ(M) ∈ JAK. So, by (P4)(c), box σ(M) ∈ P�A.
It now suffices—by the definition of J�AK—to show that

box σ(M) −→∗ box M ′

implies ·;∆′ `M ′ ∈ JAK. But then we must have σ(M) −→∗ M ′, so by repeated
applications of (R2) we have M ′ ∈ JAK.

Case(fix z in box M). (for GL only) Similar.

Case(let box u⇐M in N).

We show the case for K. We have ∆ ; Γ ` M : A and ∆, u:A ; Γ ` N : C. We
use Theorem 22(a): to show that

∆′ ; Γ′ ` σ(let box u⇐M in N) ≡ let box u⇐ σ(M) in σ(N) ∈ JCK

It suffices to show that ∆′ ; Γ′ ` σ(M) ∈ J�AK—which we have by the IH—and
that whenever ∆′′ w ∆′ and · ; ∆′′ ` Q ∈ JAK, then ∆′′ ; Γ′ ` σ(N)[Q/u] ∈ JCK.

Define
σ′

def
= σ[u 7→ Q]

Then, by weakening the modal context in σ, we have

∆′′, u:A ; Γ′
σ′

=⇒ ∆, u:A ; Γ

By the IH,
∆′′, u:A ; Γ′ ` σ′(N) ∈ JCK

But σ′(N) ≡ σ(N)[Q/u].

Corollary 3. If P = {PA} is a family satisfying properties (P1)–(P5), then

PA = ΛA

Proof. By Theorem 23 we have that M ∈ JAK for every ∆ ; Γ ` M : A. Hence
ΛA ⊆ JAK ⊆ PA ⊆ ΛA.
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Chapter 7

Modal Category Theory

In order to formulate categorical semantics for our calculi, we shall need—first and
foremost—a cartesian-closed category (CCC), for the underlying λ-calculus. For back-
ground on the categorical semantics of simply-typed λ-calculus in cartesian closed cat-
egories, we refer to the classic books of Lambek and Scott (1988) and Crole (1993),
as well as the detailed presentation of Abramsky and Tzevelekos (2011).

We shall model the modality by a strong monoidal endofunctor. In our case, the
monoidal product will be the cartesian product of the cartesian closed category. Its
being strongly monoidal corresponds to the isomorphism

�(A×B) ∼= �A×�B

which is another way of stating the modal axiom K.
In this chapter we introduce a modest amount of monoidal category theory that

we will use in our modelling attempts. Further material on monoidal functors can be
found in MacLane (Mac Lane, 1978, §XI.2). We draw a lot on a superbly lucid treat-
ment by Melliès (Melliès, 2009, §5), which is specifically geared towards categorical
logic.

7.1 Cartesian Closed Categories

Definition 14. A category C is cartesian closed just if it is cartesian (i.e. has a
terminal object 1 and a binary products) and has exponentials, i.e. for each pair of
objects A,B ∈ C there is an object BA ∈ C and an arrow

evA,B : BA × A→ B
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such that for every f : C × A → B there is a unique λ(f) : C → BA such that the
following diagram commutes:

BA × A B

C × A

evA,B

f
λ(f)×idA

There are many equivalent definitions of cartesian closure, e.g. as a couniversal
arrow from − × A to B for each pair of objects A,B ∈ C, or as the existence of a
right adjoint to the functor −× A—see Crole (1993).

7.2 Lax and Strong Monoidal Functors

Let C and D be cartesian categories. We regard them as monoidal categories (C,×,1)

and (D,×,1), respectively.

Definition 15. A functor F : C −→ D between two cartesian categories is lax
monoidal just if it is equipped with a natural transformation

m : F (−)× F (−)⇒ F (−×−)

as well as an arrow m0 : 1→ F (1) such that the following diagrams commute:

(FA× FB)× FC FA× (FB × FC)

F (A×B)× FC FA× F (B × C)

F ((A×B)× C) F (A× (B × C))

α

mA,B×idFC idFA×mB,C

mA×B,C mA,B×C

F (α)

FA× 1 FA

FA× F1 F (A× 1)

ρA

idFA×m0

mA,1

F (ρA)

1× FB FB

F1× FB F (1×B)

λB

m0×idFB

m1,B

F (λB)

Definition 16. A strong monoidal functor between two cartesian categories is a lax
monoidal functor where the components mA,B : F (A) × F (B) → F (A × B) and the
arrow m0 : 1→ F (1) are isomorphisms.
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These natural transformations can be extended to more objects. We write

n∏
i=1

An

for the product A1 × · · · × An, where the × associates to the left.
We define, by induction:

m(0) def
= 1

m0−→ F1

m(n+1) def
=

n+1∏
i=1

FAi
m(n)×id−−−−−→ F

(
n∏
i=1

Ai

)
× FAn+1

m−→ F

(
n+1∏
i=1

Ai

)

Then the m(n)’s are a natural transformation, so that

m(n) ◦
n∏
i=1

Ffi = F

(
n∏
i=1

fi

)
◦m(n)

We also note that if F : C −→ C is a monoidal endofunctor, then so is F 2 def
= F ◦F ,

with components

nA,B
def
= F 2A× F 2B

mA,B−−−→ F (FA× FB)
F (mA,B)
−−−−−→ F 2(A×B)

and n0
def
= Fm0 ◦m0—see e.g. (Melliès, 2009, §5.9).

7.2.1 Product-Preserving Functors

The definition of lax and strong monoidal functors is widely used as notions of mor-
phism between any two monoidal categories. However, in our setting, the monoidal
product will always be the cartesian product. In the rest of this section we note some
facts which are particular to the cartesian case.

To start, here is another notion of a functor between cartesian categories that
‘plays well with products,’ namely that of product-preserving functors. The definition
seems to be much stronger than simple monoidality.

Definition 17. A product-preserving functor F : C −→ D between two cartesian
categories is one for which, the arrows

pA,B
def
= 〈Fπ1, Fπ2〉 : F (A×B)

∼=−→ F (A)× F (B)

p0
def
= !F (1) : F (1)

∼=−→ 1

are isomorphisms.

77



Product-preserving functors are—indeed—strong monoidal. To show that, all we
need to consider is the inverse of the arrows required by the definition, namely

mA,B
def
= p−1

A,B : F (A)× F (B)
∼=−→ F (A×B)

m0
def
= p−1

0 : 1
∼=−→ F (1)

Before we show that, we first need to note that product-preserving functions satisfy
two rather remarkable equations. The first one will often come in handy in calcula-
tions:

Proposition 1. If F is product-preserving, then

mA,B ◦ 〈Ff, Fg〉 = F 〈f, g〉

for f : C → A, and g : D → B.

Proof. We may compute

pA,B ◦ F 〈f, g〉 = 〈Fπ1 ◦ F 〈f, g〉, Fπ2 ◦ F 〈f, g〉〉 = 〈Ff, Fg〉

and, since p−1
A,B = mA,B, the result follows.

The second equation concerns the fact that the mA,B’s may be used to relate the
projections with their image under the functor.

Proposition 2. Let F : C −→ D be product-preserving, and let

A
πA,B
1←−−− A×B

πA,B
2−−−→ B

and
FA

πFA,FB
1←−−−− FA× FB

πFA,FB
2−−−−→ FB

be product diagrams in C and D respectively. Then

F (πA,Bi ) ◦mA,B = πFA,FBi

Proof. πi ◦m−1
A,B = πi ◦ 〈F (π1), F (π2)〉 = F (πi)

We will often write equations of this sort as F (π1) ◦m = π1 without further ado.
Armed with these facts, it is now easy to see that

Theorem 24. Any product-preserving functor is strong monoidal, with mA,B and m0

defined as above.
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Proof. For f : C → A and g : D → B, we calculate that

mA,B ◦ (Ff × Fg)

= { definition }

mA,B ◦ 〈Ff ◦ π1, Fg ◦ π2〉

= {Proposition 2 }

mA,B ◦ 〈Ff ◦ F (π1) ◦mC,D, Fg ◦ F (π2) ◦mC,D〉

= { functoriality of F, naturality of product }

mA,B ◦ 〈F (f ◦ π1), F (g ◦ π2)〉 ◦mC,D

= {Proposition 1, definition }

F (f × g) ◦mC,D

so that
m : F (−)× F (−)⇒ F (−×−)

is a natural transformation. The associativity diagram commutes: the proof is a
lengthy but simple calculation involving the naturality of the product arrow, the def-
inition α

def
= 〈π1π1, 〈π2π1, π2〉〉, and—more crucially—the invertibility of the mA,B’s.

Commutation of the other two diagrams follows from Proposition 2 and the observa-
tion that ρA

def
= π1 and λB

def
= π2.

Rather strikingly, the converse holds as well: these two notions of functors between
cartesian categories coincide.

Theorem 25. Any strong monoidal functor between two cartesian categories is product-
preserving.

Proof. Note that we have that m−1
0 : F (1) −→ 1 is necessarily equal to !F (1), as

1 is a terminal object. Hence, it suffices to show that, for any A,B ∈ C, m−1
A,B =

〈F (π1), F (π2)〉.
We will first show a particular case, viz. that

m−1
A,1 = 〈Fπ1, Fπ2〉

from which the general case will follow. We compute that

(idFA ×m0)−1 = id−1
FA ×m

−1
0 = idFA × !F (1)
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Hence, reversing the direction of that arrow as well as that of mA,1 in the second
diagram of the definition of lax monoidality yields

F (π1) = π1 ◦ (idFA × !F (1)) ◦m−1
A,1 = π1 ◦mA,1

once we recall that ρA
def
= π1. Also, as m0 : 1

∼=−→ F1, F1 is also a terminal object, and
any arrow into it is of the form m0 ◦ !A : A→ F1. Hence,

π2 ◦m−1
A,1 = m0 ◦ !F (A×1)

But Fπ2 : F (A× 1)→ F1, so it is also equal to m0 ◦ !F (A×1). Thus

m−1
A,1 = 〈Fπ1, Fπ2〉

Now for the general case. As mA,B is a natural isomorphism, its inverse is a
natural transformation with components m−1

A,B. The naturality square for (idA, !B) is

F (A×B) FA× FB

F (A× 1) FA× F1

m−1
A,B

F (idA×!B) idFA×F (!B)

mA,1

Calculating down and across gives

m−1
A,1 ◦ F (idA × !B) = 〈Fπ1, !1〉 ◦ F (idA × !B) = 〈Fπ1, !F (A×B)〉

whereas across and down gives

(idFA × F (!B)) ◦m−1
A,B = 〈π1 ◦m−1

A,B, F (!B) ◦ π2 ◦m−1
A,B〉

The first two components of these should be equal, therefore π1 ◦ m−1
A,B = Fπ1.

Similarly, π2 ◦m−1
A,B = Fπ2, and hence m−1

A,B = 〈Fπ1, Fπ2〉.

7.2.2 Monoidal Natural Transformations

Definition 18. Let F,G : C −→ D be two lax monoidal functors between two
cartesian categories C,D. A monoidal natural transformation between F and G is a
natural transformation t : F ⇒ G such that the following coherence conditions hold:

FA× FB GA×GB

F (A×B) G(A×B)

tA×tB

mA,B nA,B

tA×B

1

F1 G1

n0
m0

t1
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7.3 Kripke categories

The combination of a CCC with a strong monoidal endofunctor is the quintessential
structure in our development, so we give it a name.

Definition 19. A Kripke category (C,×,1, F ) is a cartesian closed category C, con-
sidered as a monoidal category (C,×,1), along with a strong monoidal endofunctor
F : C −→ C.

Kripke categories are the minimal setting in which one can model Scott’s rule (see
§2.5.2), by defining an operation

(−)• : C

(
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)

as follows:

f :
n∏
i=1

Ai → B

f •
def
=

(
n∏
i=1

FAi

)
m(n)

−−→ F

(
n∏
i=1

Ai

)
Ff−→ FB

In some sense, the operation (−)• ‘distributes’ over composition:

Proposition 3. Let f :
∏n

i=1Bi → C and gi :
∏k

j=1 Aj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)
•

= f • ◦
〈−→
g•i

〉
Proof.

(f ◦ 〈−→gi 〉)
•

= { definition, functoriality }

Ff ◦ F 〈−→gi 〉 ◦m(k)

= {F strong monoidal }

Ff ◦m(n) ◦ 〈
−→
Fgi〉 ◦m(k)

= { naturality of product morphism, definitions }

f • ◦
〈−→
g•i

〉

81



7.4 Kripke-4 categories

Definition 20. A Kripke-4 category (C,×,1, Q, δ) is a Kripke category (C,×,1, Q)

along with a monoidal natural transformation

δ : Q⇒ Q2

such that the following diagram commutes:

QA Q2A

Q2A Q3A

δA

δA δQ(A)

Q(δA)

Concretely, δ : Q⇒ Q2 being monoidal means that the following diagrams commute:

QA×QB Q2A×Q2B

Q(QA×QB)

Q(A×B) Q2(A×B)

δA×δB

mA,B

mQA,QB

Q(mA,B)

δA×B

1

Q1

Q1 Q21

m0

m0

Q(m0)

δ1

Like Kripke categories, Kripke-4 categories are the minimal setting in which one
can model the Four rule, see §2.5.2. To see this, let (C,×,1, F, δ) be a Kripke-4
category, and write

n∏
i=1

Ai ×l
m∏
j=1

Bj

to mean the left-associating product A1 × · · · × An ×B1 × · · · ×Bm. Also, write

〈
−→
fi ,
−→gi ,
−→
hj〉

to mean the left-associating mediating morphism 〈f1, . . . , fn, g1, . . . , gm, h1, . . . , gp〉.
With this notation we can now define a map of hom-sets

(−)# : C

(
n∏
i=1

FAi ×l
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
as follows:

f :
n∏
i=1

FAi ×l
n∏
i=1

Ai → B

f# def
=

n∏
i=1

FAi
〈
−−−→
δAi

πi,
−→πi〉−−−−−→

(
n∏
i=1

F 2Ai

)
×l

(
n∏
i=1

FAi

)
m(2n)

−−−→ F

(
n∏
i=1

FAi ×l
n∏
i=1

Ai

)
Ff−→ B

Again, there is a natural distribution property:
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Proposition 4. Let f :
∏n

i=1 Bi → C and gi :
∏k

j=1 FAj ×
∏k

j=1Aj → Bi for
i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)
#

= f • ◦
〈−→
g#
i

〉
Proof. Straightforward calculation, similar to Proposition 3.

Naturally, the (−)# operation interacts harmoniously with the natural transfor-
mation δ. We can straightforwardly calculate that:

Proposition 5. Let f :
∏n

i=1 FAi ×l
∏n

i=1Ai → B. Then

δB ◦ f# = F (f#) ◦m(n) ◦
n∏
i=1

δAi

Proof. Let E def
=
∏n

i=1 FAi ×l
∏n

i=1Ai. Then

δB ◦ f#

= { definition }

δB ◦ Ff ◦m(2n) ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { δ natural }

F 2f ◦ δE ◦m(2n) ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { δ monoidal }

F 2f ◦ F (m(2n)) ◦m(2n) ◦

(
n∏
i=1

δFAi
×l

n∏
i=1

δAi

)
◦ 〈
−−→
δAi
πi,
−→πi 〉

= { product after bracket law }

F 2f ◦ F (m(2n)) ◦m(2n) ◦
〈−−−−−−→
δFAi

δAi
πi,
−−→
δAi
πi

〉
= { law pertaining to δ }

F 2f ◦ F (m(2n)) ◦m(2n) ◦
〈−−−−−−−−→
F (δAi

)δAi
πi,
−−→
δAi
πi

〉
= { naturality of product morphisms, projections }

F 2f ◦ F (m(2n)) ◦m(2n) ◦
〈−−−−−→
F (δAi

)πi,
−→πi
〉
◦
〈−−→
δAi
πi

〉
= {Proposition 2 }

F 2f ◦ F (m(2n)) ◦m(2n) ◦
〈−−−−−−−−−−−−−→
F (δAi

)F (πi) ◦m(n),
−−−−−−−−→
F (πi) ◦m(n)

〉
◦
〈−−→
δAi
πi

〉
= { naturality of product morphism, F strong monoidal }

F 2f ◦ F (m(2n)) ◦ F
(〈−−→
δAi
πi,
−→πi
〉)
◦m(n) ◦

〈−−→
δAi
πi

〉
= { definitions }

F (f#) ◦m(n) ◦
n∏
i=1

δAi
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When the morphism of type
∏n

i=1 FAi ×l
∏n

i=1 Ai → B does not depend on the
Ai, then the operation (−)# reduces to a simpler expression, which—were F and δ
components of a comonad—would coincide with the co-Kleisli extension of the arrow.

Proposition 6. Let f :
∏n

i=1 FAi → B. Then

(f ◦ 〈−−→πFAi
〉)#

= Ff ◦m(n) ◦
n∏
i=1

δAi

Proof. We calculate:

(f ◦ 〈−−→πFAi
〉)#

= { definition }

F (f ◦ 〈−−→πFAi
〉) ◦m(2n) ◦ 〈

−−→
δAi
πi,
−→πi 〉

= { functoriality, and Proposition 1 }

Ff ◦m(n) ◦ 〈
−−−−−→
F (πFAi

)〉 ◦m(2n) ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { naturality of product morphism, and Proposition 2 }

Ff ◦m(n) ◦ 〈−−−→πF 2Ai
〉 ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { naturality of product morphisms, projections }

Ff ◦m(n) ◦ 〈
−−→
δAi
πi〉

7.5 Kripke-T categories

Similarly, the following structure will be the categorical analogue to the logic T.

Definition 21. A Kripke-T category (C,×,1, Q, δ) is a Kripke category (C,×,1, Q)

along with a monoidal natural transformation

ε : Q⇒ Id

Modelling the T rule from §2.5.2 amounts to precomposition with a product of a
bunch of components of ε : Q⇒ Id. This operation interacts nicely with Scott’s rule:

Proposition 7. Let f :
∏n

i=1Ai → B. Then

f ◦
n∏
i=1

εAi
= εB ◦ f •
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Proof. Let E def
=
∏n

i=1Ai. Then

εB ◦ f • = f ◦ εE ◦m(n) = f ◦
n∏
i=1

εAi

by the definition of (−)•, the naturality of ε, as well as its being a monoidal transfor-
mation.

7.6 Gödel-Löb categories

Definition 22. Let (C,×,1, F, δ) be a Kripke-4 category. A modal fixpoint of an
arrow f : FB ×B × FA→ A is an arrow

f † : FB → FA

such that
f † = Ff ◦m(3) ◦ 〈δB, idFB, F

(
f †
)
◦ δB〉

i.e. such that the following diagram commutes:

FB FA

F 2B × FB × F 2A F (FB ×B × FA)

f†

〈δB ,id,F (f†)◦δB〉

m(3)

Ff

Definition 23. Given Kripke-4 category (C,×,1, F, δ), an object A ∈ C has modal
fixpoints just if, for each B ∈ C, there is a hom-set map

(−)†A,B : C(FB ×B × FA,A)→ C(FB,FA)

such that, for each f : FB ×B × FA→ A, f † is a modal fixpoint of f .

Definition 24. Let (C,×,1, F, δ) be a Kripke-4 category. A modal fixpoint combina-
tor at A ∈ C is an arrow

YA : F (AFA)→ FA

such that for each B and f : FB ×B × FA→ A,

FB
〈δB ,idB〉−−−−−→ F 2B × FB m−→ F (FB ×B)

F (λ(f))−−−−→ F (AFA)
YA−→ FA

is a modal fixpoint of f .

Theorem 26. Let there be a Kripke-4 category (C,×,1, F, δ). An object A ∈ C has
modal fixpoints if and only if it has a modal fixpoint combinator at A.
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Proof. For the backwards direction, we define

(−)†A,B : C(FB ×B × FA,A)→ C(FB,FA)

by mapping f : FB×B×FA→ A to its modal fixpoint YA◦F (λ(f))◦m(2)◦〈δB, idB〉.
For the forwards direction, let

g
def
= F (AFA)× AFA × FA 〈π2,π3〉−−−−→ AFA × FA ev−→ A

We will show that g† : F (AFA)→ FA is a modal fixpoint combinator at A. For this,
it suffices to show that for any f : FB×B×FA→ A it is the case that g† ◦ (λ(f))#

is a modal fixpoint of f . Towards this, we calculate; we write λf as a shorthand for
λ(f), and skip the composition symbol more often than not.

g†(λf)#

= { g† is a modal fixpoint }

Fg ◦m(3) ◦ 〈δ, id, F (g†)δ〉 ◦ (λf)#

= { naturality of product morphism, definition of (−)# }

Fg ◦m(3) ◦ 〈δF (λf)m(2)〈δ, id〉, F (λf)m(2)〈δ, id〉, F (g†)δ(λf)#〉

= { naturality of δ, and Proposition 5 }

Fg ◦m(3) ◦ 〈F 2(λf)δm(2)〈δ, id〉, F (λf)m(2)〈δ, id〉, F (g†)F ((λf)#)δ〉

= { product after bracket law, functoriality }

Fg ◦m(3) ◦ (F 2(λf)× F (λf)× id) ◦ 〈δm(2)〈δ, id〉,m(2)〈δ, id〉, F (g†(λf)#)δ〉

= {m natural, functoriality }

F (g ◦ (F (λf)× λf × id)) ◦m(3) ◦ 〈δm(2)〈δ, id〉,m(2)〈δ, id〉, F (g†(λf)#)δ〉

= { definition of g, projections }

F (ev ◦ (λf × id) ◦ 〈π2, π3〉) ◦m(3) ◦ 〈δm(2)〈δ, id〉,m(2)〈δ, id〉, F (g†(λf)#)δ〉

= { functoriality, exponential, Proposition 1 }

Ff ◦m(2) ◦ 〈Fπ2, Fπ3〉 ◦m(3) ◦ 〈δm(2)〈δ, id〉,m(2)〈δ, id〉, F (g†(λf)#)δ〉

= { naturality of product morphism, Proposition 2 }

Ff ◦m(2) ◦ 〈π2, π3〉 ◦ 〈δm(2)〈δ, id〉,m(2)〈δ, id〉, F (g†(λf)#)δ〉

= { projection }

Ff ◦m(2) ◦ 〈m(2)〈δ, id〉, F (g†(λf)#)δ〉

= { definition of m(3) and definition of triple brackets }

Ff ◦m(3) ◦ 〈δ, id, F (g†(λf)#)δ〉

Hence g†(λf)# is a modal fixpoint of f .
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7.7 Bierman-de Paiva categories

Definition 25. A comonad (Q, δ, ε) consists of an endofunctor Q : C −→ C, and two
natural transformations

ε : Q⇒ Id, δ : Q⇒ Q2

such that the following diagrams commute:

QA Q2A

Q2A Q3A

δA

δA δQ(A)

Q(δA)

QA Q2A

Q2A QA

δA

δA
idQA

εQA

Q(εA)

Definition 26. A monoidal comonad on a cartesian category C is a comonad (Q, ε, δ)

such that Q : C −→ C is a monoidal functor, and ε : Q ⇒ Id and δ : Q ⇒ Q2 are
monoidal natural transformations. Concretely, ε and δ being monoidal means that
the following diagrams commute:

QA×QB A×B

Q(A×B) A×B

εA×εB

mA,B

εA×B

1

Q1 1

m0

ε1

QA×QB Q2A×Q2B

Q(QA×QB)

Q(A×B) Q2(A×B)

δA×δB

mA,B

mQA,QB

Q(mA,B)

δA×B

1

Q1

Q1 Q21

m0

m0

Q(m0)

δ1

Definition 27. A Bierman-de Paiva category (BdP category) (C,×,1, Q, δ, ε) is a
Kripke category (C,×,1, Q) whose functor Q : C −→ C is part of a monoidal comonad
(Q, δ, ε).

Bierman-de Paiva categories are—as before—the minimal setting in which both
the Four and T rules can be modelled. This time, the Four rule is modelled precisely
by co-Kleisli extension: we define the map

(−)∗ : C

(
n∏
i=1

FAi, B

)
→ C

(
n∏
i=1

FAi, FB

)
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as follows:

f :
n∏
i=1

FAi → B

f ∗
def
=

n∏
i=1

FAi

∏n
i=1 δAi−−−−−→

n∏
i=1

F 2Ai
m(n)

−−→ F

(
n∏
i=1

FAi

)
Ff−→ FB

There is—once more—a distribution property:

Proposition 8. Let f :
∏n

i=1Bi → C and gi :
∏k

j=1 FAj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)
∗

= f • ◦
〈−→
g∗i

〉
Proof. Straightforward calculation, similar to Proposition 3.

We also calculate to show that the (−)∗ operation interacts nicely with δ.

Proposition 9. Let f :
∏n

i=1 FAi → B. Then

δB ◦ f ∗ = (f ∗)∗
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Proof. Let E def
=
∏n

i=1 FAi. Then

δB ◦ f ∗

= { definition }

δB ◦ Ff ◦m(n) ◦
n∏
i=1

δAi

= { δ natural }

F 2f ◦ δE ◦m(n) ◦
n∏
i=1

δAi

= { δ monoidal }

F 2f ◦ F (m(n)) ◦m(n) ◦
n∏
i=1

δFAi
◦

n∏
i=1

δAi

= { product is functorial }

F 2f ◦ F (m(n)) ◦m(n) ◦
n∏
i=1

δFAi
δAi

= { δ part of comonad }

F 2f ◦ F (m(n)) ◦m(n) ◦
n∏
i=1

F (δFAi
)δAi

= { product functorial, F monoidal }

F 2f ◦ F (m(n)) ◦ F

(
n∏
i=1

δAi

)
◦m(n) ◦

n∏
i=1

δAi

= { functoriality of F , definitions }

(f ∗)∗
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Chapter 8

Categorical semantics

In this chapter we use the modal category theory developed in §7 to formulate a
categorical semantics for our dual-context calculi. This completes the circle in terms
of the Curry-Howard-Lambek correspondence, showing the following associations:

CK ←→ DK ←→ Kripke categories
CK4 ←→ DK4 ←→ Kripke-4 categories
CGL ←→ DGL ←→ Gödel-Löb categories
CT ←→ DT ←→ Kripke-T categories
CS4 ←→ DS4 ←→ Bierman-de Paiva categories

where the first bi-implication refers to provability, whereas the second refers to sound-
ness and completeness of the dual-context calculus with respect to the type of category
on the right. The case for GL remains incomplete in the present document.

We begin by endowing our calculi with an equational theory, and then proceed to
show soundness and completeness for this equational theory.

8.1 Equational Theory

To state the full set of equatios, we will need the notion of term contexts, i.e. terms
with a single hole.

Definition 28 (Term Contexts).

1. Term contexts C[−] are defined by the following grammar:

C[−] ::= [−] | λx:A. C[−] | C[−] M |M C[−]

| 〈C[−],M〉 | 〈M,C[−]〉 | πi(C[−])

| box C[−]

| let box u⇐ C[−] in M

| let box u⇐M in C[−]
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2. C[−] is non-modal just if it is generated without the clause box C[−].

3. C[−] does not bind u just if it is generated without the clause let box u ⇐
C[−] in C[−].

We write C[M ] for the term that results from (capture-insensitive) substitution
of the term M for the hole [−] of the term context C[−].

The equational rules that pertain to all our systems can be found in Figure 8.1,
whereas the equations for the various modalities can be found in Figure 8.2. To obtain
the complete set, one should also add congruences for function types, and rules to
make equality an equivalence relation. We need not include substitution rules, as the
next theorem shows that they are derivable.

Theorem 27. Structural rules of weakening, exchange and contraction for contexts
are admissible in the equational theory. Furthermore, the following rules are derivable
in the equational theory:

1. (Substitution)

∆ ; Γ, x:A `M = N : C ∆ ; Γ ` P = Q : A

∆ ; Γ `M [P/x] = N [Q/x] : C

2. (Modal Substitution)

∆, u:A ; Γ `M = N : C · ;∆ ` P = Q : �A

∆ ; Γ `M [P/u] = N [Q/u] : C

8.1.1 Commuting Conversions

The most interesting rules are the unavoidable commuting conversions that arise from
the study of the categorical semantics of our systems.

The rule (commweak) is a ‘weakening’ rule that disposes of an explicit substitution
which binds a non-occuring variable. This rule has never been considered in the study
of dual-context systems, for DILL (Barber, 1996) was a linear system, and Davies and
Pfenning (Pfenning and Davies, 2001) did not study neither reduction nor equality.
However, a similar rule was proposed by Goubault-Larrecq (1996) in his study of
Bierman and de Paiva’s calculus for S4. This rule was later included in (Bierman and
de Paiva, 2000).

The rule (commlet), read in one direction, allows one to ‘pull’ an explicit substi-
tution that is buried in a subterm to an outermost position—as long as that would
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Figure 8.1: Equations for all systems

Function Spaces

∆ ; Γ, x:A `M : B ∆ ; Γ ` N : A
(→ β)

∆ ; Γ ` (λx:A.M)N = M [N/x] : B

∆ ; Γ `M : A→ B x 6∈ fv(M)
(→ η)

∆ ; Γ `M = λx:A.Mx : A→ B

Modality

∆ ; Γ `M : �A
(�η)

∆ ; Γ ` let box u⇐M in box u = M : �A

∆ ; Γ `M = N : �A ∆ ; Γ ` P = Q : C
(�let-cong)

∆ ; Γ ` let box u⇐M in P = let box u⇐ N in Q : B

Commuting Conversions

(commlet)

∆ ; Γ ` C[let box u⇐M in N ] : C C[−] is non-modal, does not bind u

∆ ; Γ ` let box u⇐M in C[N ] = C[let box u⇐M in N ] : C

(commweak)

∆ ; Γ ` N : C ∆ ; Γ `M : �A u 6∈ fv(N)

∆ ; Γ ` let box u⇐M in N = N : C

(commcontr)

∆ ; Γ `M : �A ∆, u:A, v:A ; Γ ` N : C u, v 6∈ fv(M)

∆ ; Γ ` let box u⇐M in let box v ⇐M in N = let box w ⇐M in N [w,w/u, v] = N : C

Remark. In addition to the above, one should also include (a) rules that ensure that
equality is an equivalence relation, and (b) congruence rules for λ-abstraction and
application.
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Figure 8.2: Equations for the modalities

For DK and DT:

· ; ∆ `M : A ∆, u : A ; Γ ` N : C
(�βK)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

· ; ∆ `M = N : A
(�congK)

∆ ; Γ ` box M = box N : �A

For DK4:

∆ ; ∆⊥ `M⊥ : A ∆, u:A ; Γ ` N : C
(�βK4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; ∆⊥ `M⊥ = N⊥ : A
(�congK4)

∆ ; Γ ` box M = box N : �A

For DGL:

∆ ; ∆⊥, z⊥ : �A `M⊥ : A ∆, u:A ; Γ ` N : C
(�βGL)

∆ ; Γ ` let box u⇐ fix z in box M in N = N [M [fix z in box M/z] /u] : C

∆ ; ∆⊥, z⊥ : �A `M⊥ = N⊥ : A
(�congGL)

∆ ; Γ ` fix z in box M = fix z in box N : �A

For DS4:

∆ ; · `M : A ∆, u : A ; Γ ` N : C
(�βS4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; · `M = N : A
(�congS4)

∆ ; Γ ` box M = box N : �A

93



not imply that it binds something in the process. A variant of it was considered in
the study of DILL by Barber (1996), and is also mentioned by Kakutani (2007). It is
worth noting that, as a special case, (commlet) includes a form of ‘exchange,’ namely
swapping of the order of non-interacting explicit substitutions; this special case is
thoroughly studied by Goubault-Larrecq (1996).

Finally, (commcontr) is a ‘contraction’ rule. This is also unfamiliar in dual-context
calculi—essentially for the same reasons as (commweak)—but is well-known as a
‘garbage collecton’ rule in Bierman–de Paiva type calculi: see (Goubault-Larrecq,
1996), Bierman and de Paiva (2000) and Kakutani (2007).

8.2 Categorical Interpretation

We are now fully equipped to define the categorical semantics of our dual-context
systems. For background on the categorical semantics of simply-typed λ-calculus in
cartesian closed categories, we refer to the classics by Lambek and Scott (1988) and
Crole (1993), as well as the detailed presentation of Abramsky and Tzevelekos (2011).

We start by interpreting types and contexts. Given any Kripke category (C,×,1, F ),
and a map I(−) associating each base type pi with an object I(pi) ∈ C, we define an
object JAK ∈ C for every type A by induction:

JpiK
def
= I(pi)

JA→ BK def
= JBKJAK

J�AK def
= F (JAK)

Then, given a well-defined context ∆ ; Γ where ∆ = u1:B1, . . . un:Bn and Γ =

x1:A1, . . . , xm:Am, we let

J∆ ; ΓK def
= F (B1)× · · · × F (Bn)× A1 × · · · × Am

where the product is, as ever, left-associating.
We then extend the semantic map J−K to associate an arrow

J∆ ; Γ `M : AK : J∆ ; ΓK → JAK

of the category C to each derivation ∆ ; Γ `M : A. The definition for rules common
to all calculi are the same. For each logic, but we use each of the maps defined in §7
to interpret the introduction rules for the modality. As such, we need more than just
a Kripke category: for K4 we need a Kripke-4 category, for T we need a Kripke-T
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Figure 8.3: Categorical Semantics

Definitions for all calculi

J∆ ; Γ, x:A,Γ′ ` x : AK def
= π : J∆ ; Γ, x:A,Γ′K −→ JAK

J∆ ; Γ ` 〈M,N〉 : A→ BK def
= 〈J∆ ; Γ `M : AK , J∆ ; Γ ` N : BK〉

J∆ ; Γ ` πi(M) : AiK
def
= πi ◦ J∆ ; Γ `M : A1 × A2K

J∆ ; Γ ` λx:A.M : A→ BK def
= λ (J∆ ; Γ, x : A `M : BK) : J∆ ; ΓK −→ JBKJAK

J∆ ; Γ `MN : BK def
= ev ◦ 〈J∆ ; Γ `M : A→ BK , J∆ ; Γ ` N : AK〉

J∆ ; Γ ` let box u⇐M in N : CK def
= J∆, u:A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ `M : �AK ,−→πΓ〉

Definitions for various modalities

J∆, u:A,∆′ ; Γ ` u : AKT
def
= εA ◦ π : J∆, u:A,∆′ ; ΓK → J�AK → JAK

J∆ ; Γ ` box M : �AKL
def
= (J· ; ∆ `M : AK)• ◦ π∆;Γ

∆ (for L ∈ {K,T})

J∆ ; Γ ` box M : �AKK4
def
=
(q

∆ ; ∆⊥ `M⊥ : A
y)# ◦ π∆;Γ

∆

J∆ ; Γ ` box M : �AKGL
def
=
(q

∆ ; ∆⊥, z : �A `M⊥ : A
y)† ◦ π∆;Γ

∆

J∆ ; Γ ` box M : �AKS4
def
= (J∆ ; · `M : AK)∗ ◦ π∆;Γ

∆
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category, for GL we need a Gödel-Löb category, and for S4 we need a Bierman-de
Paiva category.

The full definition is given in Figure 8.3. The map

π∆;Γ
∆ : J∆ ; ΓK → J∆ ; ·K

is the obvious projection. Moreover, the notation 〈−→π∆, f,
−→πΓ〉 stands for

〈−→π∆, f,
−→πΓ〉

def
= 〈π1, . . . , πn, f, πn+1, . . . , πn+m〉

8.3 Soundness

The main tools in proving soundness of our interpretation are (a) lemmas giving the
categorical interpretation of various admissible rules, and (b) a fundamental lemma
relating substitution of terms to composition in the category. In the sequel we often
use informal vector notation for contexts: for example, we write ~u : ~B for the context
u1 : B1, . . . , un : Bm. We also write [ ~N/~u] for the simultaneous, capture-avoiding
substitution [N1/u1, . . . , Nm/un].

First, we interpret weakening and exchange.

Lemma 9 (Semantics of Weakening).

1. Let ∆ ; Γ, x:C,Γ′ `M : A with x 6∈ fv (M). Then

J∆ ; Γ, x:C,Γ′ `M : AK = J∆ ; Γ,Γ′ `M : AK ◦ π

where π : J∆ ; Γ, x:C,Γ′K → J∆ ; Γ,Γ′K is the obvious projection.

2. Let ∆, u:B,∆′ ; Γ `M : A with u 6∈ fv (M). Then

J∆, u:B,∆′ ; Γ `M : AK = J∆,∆′ ; Γ `M : AK ◦ π

where π : J∆, u:B,∆′ ; ΓK → J∆,∆′ ; ΓK is the obvious projection.

Proof. By induction on the two derivations. All cases are straightforward.

Lemma 10 (Semantics of Exchange).

1. Let ∆ ; Γ, x:C, y:D,Γ′ `M : A. Then

J∆ ; Γ, x:C, y:D,Γ′ `M : AK = J∆ ; Γ, y:D, x:C,Γ′ `M : AK ◦ (∼=)

where (∼=) : J∆ ; Γ, x:C, y:D,Γ′K
∼=−→ J∆ ; Γ, y:D, x:C,Γ′K is the obvious isomor-

phism.
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2. Let ∆, u:C, v:D,∆′ ; Γ `M : A. Then

J∆, u:C, v:D,∆′ ; Γ `M : AK = J∆, v:D, u:C,∆′ ; Γ `M : AK ◦ (∼=)

where (∼=) : J∆, u:C, v:D ; ΓK
∼=−→ J∆, v:D, u:C ; ΓK is the obvious isomorphism.

Proof. By induction on the two derivations. All cases are straightforward.

Then, we move on to something particular to the cases of T and S4, namely the
interpretation of the Modal Dereliction rule—see §12.

Lemma 11 (Semantics of Dereliction). Let ∆ ; Γ,Γ′ `DL M : A where L ∈ {T, S4}
and Γ = ~z : ~C. Then

J∆,Γ ; Γ′ `M : AKL = J∆ ; Γ,Γ′ `M : AKL ◦
(−→
id∆ ×−→εCi

×
−→
id′Γ

)
Proof. By induction on the derivation of ∆ ; Γ,Γ′ `DL M : A. All cases are straight-
forward. The case for (�E) depends on the semantics of exchange lemma.

Only one thing remains to show, namely that the components of the various models
interact in the expected way with the semantics of terms of the calculus.

Lemma 12 (Double box).

1. If ∆ ; ∆⊥ `DK4 M : A, then

J∆ ; Γ ` box (box M) : ��AK = δA ◦ J∆ ; Γ ` box M : �AK

2. If ∆ ; · `DS4 M : A, then

J∆ ; Γ ` box (box M) : ��AK = δA ◦ J∆ ; Γ ` box M : �AK

Proof.

1. Let f def
=

q
∆ ; ∆⊥ `M : A

y
. Then

J∆ ; Γ ` box (box M) : ��AK

= { definitions }

(f# ◦ π∆;∆⊥

∆ )# ◦ π∆;Γ
∆

= {Proposition 6 }

F (f#) ◦m(n) ◦
n∏
i=1

δAi
◦ π∆;Γ

∆

= {Proposition 5 }

δA ◦ f# ◦ π∆;Γ
∆

= { definitions }

δA ◦ J∆ ; Γ ` box M : �AK
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2. Let f def
= J∆ ; · `M : AK. Then

J∆ ; Γ ` box (box M) : ��AK

= { definitions }

(f ∗)∗ ◦ π∆;Γ
∆

= {Proposition 9 }

δA ◦ f ∗ ◦ π∆;Γ
∆

= { definitions }

δA ◦ J∆ ; Γ ` box M : �AK

Lemma 13 (Identity Lemma). For (ui : Bi) ∈ ∆, and L ∈ {K,K4,T, S4},

J∆ ; Γ ` box ui : �BiKL = π∆;Γ
�Bi

Proof.

Case(K, T).

J∆ ; Γ ` box ui : �BiK

= { definition }

J· ; ∆ ` ui : BiK
• ◦ π∆;Γ

∆

= { definition }(
π·;∆Bi

)•
◦ π∆;Γ

∆

= {Proposition 2 }

π∆;·
�Bi
◦ π∆;Γ

∆

= { projections }

π∆;Γ
�Bi
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Case(K4).

J∆ ; Γ ` box ui : �BiK

= { definition }
q
∆ ; ∆⊥ ` u⊥i : Bi

y# ◦ π∆;Γ
∆

= { definition }(
π∆;∆⊥

Bi

)#

◦ π∆;Γ
∆

= { definition }

Fπ∆;∆⊥

Bi
◦m(2n) ◦ 〈

−−−→
δBi

πi,
−→πi 〉 ◦ π∆;Γ

∆

= {Proposition 2 }

π�∆;�∆⊥

�Bi
◦ 〈
−−−→
δBi

πi,
−→πi 〉 ◦ π∆;Γ

∆

= { projections }

π∆;Γ
�Bi

Case(S4).

J∆ ; Γ ` box ui : �BiK

= { definition }

J∆ ; · ` ui : BiK
∗ ◦ π∆;Γ

∆

= { definition }(
εBi
◦ π∆;·
�Bi

)∗
◦ π∆;Γ

∆

= { definition }

FεBi
◦ Fπ∆;·

�Bi
◦m(n) ◦

n∏
i=1

δAi
◦ π∆;Γ

∆

= {Proposition 2 }

FεBi
◦ π�∆;·
��Bi

◦
n∏
i=1

δAi
◦ π∆;Γ

∆

= { projections }

FεBi
◦ δBi

◦ π∆;·
�Bi
◦ π∆;Γ

∆

= { comonad }

π∆;Γ
�Bi
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Lemma 14 (Semantics of Substitution). Suppose that ~u : ~B ; ~x : ~A `DL P : C. Let
∆ ; Γ `DL Mi : Ai for i = 1, . . . , n, and let

αi
def
= J∆ ; Γ `Mi : AiKL

If either

1. L ∈ {K,T} and · ; ∆ ` Nj : Bj for j = 1, . . . ,m, or

2. L = K4 and ∆ ; ∆⊥ ` N⊥j : Bj for j = 1, . . . ,m, or

3. L = S4 and ∆ ; · ` Nj : Bj for j = 1, . . . ,m,

then, letting for j = 1, . . . ,m

βj
def
= J∆ ; Γ ` box Nj : �BjK

we have that
r

∆ ; Γ ` P [ ~N/~u, ~M/~x] : C
z

=
r
~u : ~B ; ~x : ~A ` P : C

z
◦ 〈β1, . . . , βm, α1, . . . , αn〉

Proof. By induction on the derivation of ~u : ~B ; ~x : ~A ` P : C Most cases are
straightforward, and use a combination of standard equations that hold in cartesian
closed categories—see §7.1 or (Crole, 1993, §2)—in order to perform calculations very
close the ones detailed in (Abramsky and Tzevelekos, 2011, §1.6.5). Because of the
precise definitions we have used, we also need to make use of Lemma 9 to interpret
weakening whenever variables in the context do not occur freely in the term. We
only cover the modal cases.

Case(�var). (For T only.) Then P ≡ ui for some ui amongst the ~u. Hence,
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the LHS is ∆ ; Γ ` Ni : Bi, whereas we calculate that the RHS is
r
~u : ~B ; ~x : ~A ` P : C

z
◦ 〈~β, ~α〉

= { definition }

εBi
◦ π~u: ~B;~x: ~A

ui:Bi
◦ 〈~β, ~α〉

= { projection }

εBi
◦ J∆ ; Γ ` box Ni : �BiK

= { definition }

εBi
◦ (J· ; ∆ ` Ni : BiK)• ◦ π∆

∆;Γ

= {Proposition 7 }

J· ; ∆ ` Ni : BiK ◦
l∏

i=1

εCi
◦ π∆

∆;Γ

= { Semantics of Dereliction (Lemma 11) }

J∆ ; · ` Ni : BiK ◦ π∆
∆;Γ

= { Semantics of Weakening (Lemma 9) }

J∆ ; Γ ` Ni : BiK

Case(�IK). We have that ~u : ~B ; ~x : ~A ` box P : �C, so that · ; ~u : ~B ` P : C,
with the result that none of the variables ~x occurs free in P . We use this fact
and the definition of substitution to calculate:

r
∆ ; Γ ` box (P [ ~N/~u, ~M/~x]) : �C

z

= { definition, and non-occurence of the ~x }(r
· ; ∆ ` P [ ~N/~u] : C

z)•
◦ π∆;Γ

∆

= { IH }(r
· ; ~u : ~B ` P : C

z
◦
〈−−−−−−−−−−−→
J· ; ∆ ` Ni : BiK

〉)•
◦ π∆;Γ

∆

= {Proposition 3 }(r
· ; ~u : ~B ` P : C

z)•
◦
〈−−−−−−−−−−−→
J· ; ∆ ` Ni : BiK

•
〉
◦ π∆;Γ

∆

= { naturality of product morphism, definition }(r
· ; ~u : ~B ` P : C

z)•
◦ π~u: ~B;~x: ~A

~u: ~B
◦
〈−→
β ,−→α

〉
= { definition }

r
~u : ~B ; ~x : ~A ` box P : �C

z
◦
〈−→
β ,−→α

〉
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Case(�IK4). We have that ~u : ~B ; ~x : ~A ` box P : �C, so that ~u : ~B ; ~u⊥ :
~B ` P : C, with the result that none of the variables ~x or

−→
x⊥ occur free in P .

Hence, (
P [ ~N/~u, ~M/~x]

)⊥
≡ P [ ~N/~u,

−→
N⊥/
−→
u⊥]

by Theorem 7. Now we calculate:
r

∆ ; Γ ` box (P [ ~N/~u, ~M/~x]) : �C
z

= { definition, and non-occurence of the ~x and
−→
x⊥ }(r

∆ ; ∆⊥ ` P [ ~N/~u,
−→
N⊥/
−→
u⊥] : C

z)#

◦ π∆;Γ
∆

= { IH }(r
~u : ~B ; ~u⊥ : ~B ` P : C

z
◦
〈−−−−−−−−−−−−−−−−−−→q

∆ ; ∆⊥ ` box Ni : �Bi

y
,
−−−−−−−−−−−−−→q
∆ ; ∆⊥ ` Ni : Bi

y〉)#

◦ π∆;Γ
∆

= {Proposition 4 }
r
~u : ~B ; ~u⊥ : ~B ` P : C

z•
◦
〈−−−−−−−−−−−−−−−−−−−→q

∆ ; ∆⊥ ` box Ni : �Bi

y#
,
−−−−−−−−−−−−−−→q
∆ ; ∆⊥ ` Ni : Bi

y#
〉
◦ π∆;Γ

∆

= { naturality of product morphism, definition }
r
~u : ~B ; ~u⊥ : ~B ` P : C

z•
◦
〈−−−−−−−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box (box Ni) : ��BiK,

−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box Ni : �BiK

〉
= {Double box (Theorem 12 }

r
~u : ~B ; ~u⊥ : ~B ` P : C

z•
◦
〈−−−−−−−−−−−−−−−−−−−−→
δBi
◦ J∆ ; Γ ` box Ni : �BiK,

−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box Ni : �BiK

〉
= { naturality and projections }

r
~u : ~B ; ~u⊥ : ~B ` P : C

z•
◦
〈−−−→
δBi

πi,
−→πi
〉
◦
〈−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box Ni : �BiK

〉
= { some projections and definition }

r
~u : ~B ; ~x : ~A ` box P : �C

z
◦
〈−→
β ,−→α

〉
Case(�IS4). We have that −→u :

−→
B ; −→x :

−→
A ` box P : �C, so that −→u :

−→
B ; · ` P : C, with the result that none of the variables −→x occur in P . Hence
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P [ ~N/~u, ~M/~x] ≡ P [ ~N/~u], and we calculate:
r

∆ ; Γ ` box (P [ ~N/~u, ~M/~x]) : �C
z

= { definition, and non-occurence of the ~x in P }
r

∆ ; · ` P [ ~N/~u] : C
z∗
◦ π∆;Γ

∆

= { IH }(r
~u : ~B ; · ` P : C

z
◦
〈−−−−−−−−−−−−−−−→
J∆ ; · ` box Ni : �BiK,

〉)∗
◦ π∆;Γ

∆

= {Proposition 8 }
r
~u : ~B ; · ` P : C

z•
◦
〈−−−−−−−−−−−−−−−−→
J∆ ; · ` box Ni : �BiK

∗
〉
◦ π∆;Γ

∆

= { naturality of product morphism, definition }
r
~u : ~B ; · ` P : C

z•
◦
〈−−−−−−−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box (box Ni) : ��BiK

〉
= {Double box (Theorem 12 }

r
~u : ~B ; · ` P : C

z•
◦
〈−−−−−−−−−−−−−−−−−−−−→
δBi
◦ J∆ ; Γ ` box Ni : �BiK

〉
= { product after angled brackets }

r
~u : ~B ; · ` P : C

z•
◦

n∏
i=1

δBi
◦
〈−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box Ni : �BiK

〉
= { some projections and definition of (−)∗ and J−K }

r
~u : ~B ; ~x : ~A ` box P : �C

z
◦
〈−→
β ,−→α

〉

Theorem 28 (Soundness). If ∆ ; Γ `DL M = N : A, then we have that

J∆ ; Γ `M : AKL = J∆ ; Γ ` N : AKL

Proof. By induction on the derivation of ∆;Γ `DL M = N : A. The congruence cases
are clear, as is the majority of the ordinary clauses—see Crole (1993) and Abramsky
and Tzevelekos (2011). The rules that remain are (�η), the many variants of (�β),
and the commuting conversions.

First, we prove the modal β (except GL) and η cases by direct calculation. At
this point we ought to remark that it is of paramount importance that the monoidal
functor be strong: perhaps unexpectedly, this is not only used in proving (�η) sound,
but it is necessary in the cases of (�β) as well—in particular when obtaining Lemma
13.
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Let ∆ = ~u : ~B and Γ = ~x : ~A. We then calculate:

J∆ ; Γ ` let box u⇐ box M in N : CK

= { definition }

J∆, u:A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ ` box M : �AK ,−→πΓ〉

= {Lemma 13 }

J∆, u:A ; Γ ` N : CK ◦ 〈
−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box ui : �BiK, J∆ ; Γ ` box M : �AK ,

−−−−−−−−−−−→
J∆ ; Γ ` xi : AiK〉

= {Lemma 14 }

J∆ ; Γ ` N [~ui/~ui,M/u, ~xi/~xi] : CK

The case of (�η) is even simpler, and follows immediately from Lemma 13.
The commuting conversions for weakening and contraction are straightforward and

follow from the associated lemmas we have proved above. The (commlet) requires a
subsidiary induction on contexts C[−], which follows easily from naturality of the
various operations of the CCC.

8.4 Completeness

In this section, we prove that our categorical semantics is complete; that is:

Theorem 29 (Completeness).

1. If J∆ ; Γ `DK M : AK = J∆ ; Γ `DK N : AK in every Kripke category, then the
judgment ∆ ; Γ `DK M = N : A is derivable.

2. If J∆ ; Γ `DK4 M : AK = J∆ ; Γ `DK4 N : AK in every Kripke-4 category, then
the judgment ∆ ; Γ `DK4 M = N : A is derivable.

3. If J∆ ; Γ `DT M : AK = J∆ ; Γ `DT N : AK in every Kripke-T category, then the
judgment ∆ ; Γ `DT M = N : A is derivable.

4. If J∆ ; Γ `DS4 M : AK = J∆ ; Γ `DS4 N : AK in every Bierman-de Paiva cate-
gory, then the judgment ∆ ; Γ `DS4 M = N : A is derivable.

By the method of Lindenbaum and Tarski, to prove this theorem it suffices to
construct a suitable category of each sort from the bare syntax of each calculus.
Thus, we construct a Kripke category CK based on the syntax of DK, a Bierman-
de Paiva category CS4 based on the syntax of DS4, and so on. The reasoning then
proceeds as follows: if an equation holds in all categories of this sort, then it holds
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in the one made of syntax, which—and we must also show this—yields the required
equality.

To perform the aforementioned syntactic construction, we follow a pattern that we
learned from Čubrić et al. (1998). The objects of all our categories will be two-zoned
lists of types,

〈 ~B| ~A〉

and the morphisms 〈 ~B| ~A〉 −→ 〈 ~D|~C〉 shall be two-zoned lists of terms, quotiented up
to provable renaming and equality.

In the first zone, the typing will have a form that will be readily substitutable for
a modal variable. For CK and CT, the morphisms will be

〈· ; ~u : ~B ` N1 : D1, . . . , · ; ~u : ~B ` Nl : Dl |

~u : ~B ; ~x : ~A `M1 : C1, . . . , ~u : ~B ; ~x : ~A `Mk : Ck〉

whereas for CS4 they will be

〈~u : ~B ; · ` N1 : D1, . . . , ~u : ~B ; · ` Nl : Dl |

~u : ~B ; ~x : ~A `M1 : C1, . . . , ~u : ~B ; ~x : ~A `Mk : Ck〉

Finally, in CK4 morphisms will respect the structure of complementary variables and
their relationship to substitution, and so take the form

〈~u : ~B ; ~u⊥ : ~B ` N⊥1 : D1, . . . , ~u : ~B ; ~u⊥ : ~B ` N⊥l : Dl |

~u : ~B ; ~x : ~A `M1 : C1, . . . , ~u : ~B ; ~x : ~A `Mk : Ck〉

Composition is then defined by substitution, and the identity morphisms will be
simply occurences of variables; e.g. in CK and CT they will be

〈· ; ~u : ~B ` u1 : B1, . . . , · ; ~u : ~B ` um : Bm |

~u : ~B ; ~x : ~A ` x1 : A1, . . . , ~u : ~B ; ~x : ~A ` xn : An〉

It is easy to verify that composition is associative and that the proposed arrows are
identities: associativity corresponds to the so-called substitution lemma, and identities
vanish up to renaming.

This constitutes a cartesian closed category, on which there is an easy-to-define
strict monoidal functor. To complete the argument, one shows by induction on M

that
r
~u : ~B ; ~x : ~A `M : A

z
=
〈
−
∣∣∣· ; ~v : ~�B, ~x : ~A ` let box ~u⇐ ~v in M : A

〉
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Chapter 9

Coda

We have thus achieved a full Curry-Howard-Lambek isomorphism for a handful of
modal logics, spanning the logical aspect (Hilbert systems and provability), the com-
putational aspect (a study of reduction), and the categorical aspect (proof-relevant
semantics).

In order to achieve the first junction—that between logic and computation—we
have employed a systematic pattern based on sequent calculus, namely a way to
translate (right or single) modal sequent calculus rules to introduction rules for dual
context systems. In all our cases this has worked remarkably well. It is our hope
that there is a deeper aspect to this pattern—perhaps even a theorem to the effect
that sequent calculi rules for which cut elimination is provable can be immediately
translated to a strongly normalizing dual context system. Of course, this is rather
utopian at this stage, but we believe it is worth investigating.

We have also set the scene for a handful of different necessity modalities, and
begun to elucidate their computational behaviour. The present author believes that
modalities can be used to control the ‘flow of data’ in a programming language,
in the sense that they create regions of the language which communicate in a very
specific way. For example, one can handwavingly argue that S4 guarantees that ‘only
modal variables flow into terms of modal type,’ whereas K additionally ensures that
no modal data flows into a term of non-modal type. However, these examples are—
at this stage—mere intuitions. Making such intuitions rigorous and proving them
should amount to a sort of dataflow safety property. A first result of this style is
the free variables theorem (Theorem 8), but the author finds it rather weak. We
believe that this might be made much stronger by making use of the second junction,
that between computation and categories: investigating categorical models for these
calculi can perhaps give a succinct and rigorous expression to these intuitions.
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Having such safety properties can make these calculi extraordinarily useful for
particular applications. For example, it seems that K is stratified in two levels: ‘the
world under a box,’ and ‘the world outside boxes.’ These seemingly two layers of
K resemble the two-level λ-calculi used in binding time analyses Nielson and Nielson
(1992). The distinction between compile-time vs. run-time—or even code vs. value—
is known to be expressible in terms of modalities: this result is is due to Davies and
Pfenning Davies and Pfenning (2001), who embed two-level λ-calucli in a ‘full and
faithful’ manner in their modal programming language. Even though their system is
DS4 they remark that the necessary “fragment corresponds to a weaker modal logic,
K, in which we drop the assumption in S4 that the accessibility relation is reflexive
and transitive [...].” Thus, we may think of K as the logic of program construction,
i.e. a form of metaprogramming that happens in one stage.

Another interpretation of K could be as the logic of homomorphic encryption.
Suppose we pick a cartesian closed category C; we can turn C into a Kripke category,
by defining a strong monoidal functor by F (A)

def
= 1. This should prime us towards

the following fact: if we ‘identify’ box terms, i.e. consider theM in box M to be invis-
ible and indistinguishable, then one may understand K as a server-side programming
language for homomorphic encryption (see e.g. Gentry (2010)). Indeed, the term axK

that is the proof-relevant version of axiom K can be understood as the server-side
routine that applies an encrypted function to an encrypted datum. Previous work
of this sort has appeared before: e.g. Mitchell et al. Mitchell et al. (2012) embed
domain-specific λ-calculus for structuring homomorphically encrypted computation
in Haskell. But their results to be based on monads, and hence the monadic meta-
language (Moggi, 1991), whose modality satisfies (A→ B)→ (TA→ TB) A term of
this type intuitively allows the server to apply any function A→ B to an encrypted
datum of type TA, to obtain an encrypted datum of type TB. Arguably, the server
should not be allowed to do that, unless the client has encrypted the function to
obtain a term of type T (A→ B) beforehand. This is a requirement that our calculus
already enforces.
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